Answer:
23.04 m
Explanation:
We'll begin by calculating the initial velocity of the pellet. This can be obtained as follow:
Height (h) of cliff = 14.7 m
Final velocity (v) = 27.2 m/s
Acceleration due to gravity (g) = 9.8 m/s²
Initial velocity (u) =?
v² = u² + 2gh
27.2² = u² + (2 × 9.8 × 14.7)
739.84 = u² + 288.12
Collect like terms
u² = 739.84 – 288.12
u² = 451.72
Take the square root of both side
u = √451.72
u = 21.25 m/s
Thus, the initial velocity of the pellet is 21.25 m/s.
Finally, we shall determine the maximum height to which the pellet would have gone assuming the gun was fired straight upward. This can be obtained as follow:
Initial velocity (u) = 21.25 m/s
Acceleration due to gravity (g) = 9.8 m/s²
Final velocity (v) = 0 m/s (at maximum height)
Maximum height (h) =?
v² = u² – 2gh (since the pellet is going against gravity.
0² = 21.25² – (2 × 9.8 × h)
0 = 451.5625 – 19.6h
Collect like terms
0 – 451.5625 = –19.6h
–451.5625 = –19.6h
Divide both side by –19.6
h = –451.5625 / –19.6
h = 23.04 m
Therefore, the pellet will reach a maximum height of 23.04 m above the cliff.
To have the highest magnification in a telescope, the focal length of the objective lens should be _________ and the focal length of the eyepiece lens should be ________. To have the highest magnification in a telescope, the focal length of the objective lens should be _________ and the focal length of the eyepiece lens should be ________. small; small small; large large; small large; large
Answer:
Large; small.
Explanation:
A telescope can be defined as an optical instrument or device which comprises of a curved mirror and lenses used for viewing distant objects i.e objects that are very far away such as stars and other planetary bodies. The first telescope was invented by Sir Isaac Newton.
To have the highest magnification in a telescope, the focal length of the objective lens should be large and the focal length of the eyepiece lens should be small.
This ultimately implies that, the eyepiece lens has a small focal length while the objective lens has a large focal length.
Heart Disease is the number one cause of preventable death in the United States
A True
B False
Heart disease is the leading cause of death for both men and women. This is the case in the U.S. and worldwide. More than half of all people who die due to heart disease are men.
TRUE
A swimmer pushing off from the wall of a pool exerts a force of 1 newton on the wall. What is the reaction force of the wall on the swimmer?
Answer: 1 Newton
Explanation:
"Every action has an equal and opposite reaction."
Please mark as Brainliest if it is correct.
Force is an action-reaction principle. It stated that the force always exists in a pair. The reaction force of the wall on the swimmer will be 1N.
What is Newton's third law of motion?Newton's third law of motion state that every action has an equal and opposite reaction. It is an action-reaction principle. It stated that the force always exists in a pair.
Both occur in an action-reaction form. Hence for every action, there is an equal and opposite reaction.
[tex]\rm F_{action}=F_{reaction} \\\\ \rm F_{action= 1N[/tex]
[tex]\rm F_{reaction} = 1N[/tex]
Hence the reaction force of the wall on the swimmer will be 1N.
To learn more about Newton's third law refer to the link;
https://brainly.com/question/1077877
Violet pulls a rake horizontally on a frictionless driveway with a net force of 2.0 N for 5.0 m.
How much kinetic energy does the rake gain?
Answer:
10 J.
Explanation:
Given that,
Net force acting on the rake, F = 2 N
Distance moved by the rake, d = 5 m
We need to find the kinetic energy gained by the rake. We know that,
Kinetic energy = work done
So,
K = F×d
K = 2 N × 5 m
K = 10 J
So, 10 J of kinetic energy is gained by the rake.
Violet pulls a rake horizontally on a frictionless driveway with a net force of 2.0 N for 5.0 m.
How much kinetic energy does the rake gain?
Answer: 10 J
A swimmer, capable of swimming at a speed of 1.60 m/s in still water (i.e., the swimmer can swim with a speed of 1.60 m/s relative to the water), starts to swim directly across a 1.25-km-wide river. However, the current is 0.549 m/s, and it carries the swimmer downstream. (a) How long does it take the swimmer to cross the river
Answer:
t = 781.25 s
Explanation:
This is an exercise in velocity composition, if we set a reference system where the x-axis is perpendicular to the river and the y-axis is parallel to the river.
The swimmer has a velocity on the x axis
vx = 1.60 m / s
a velocity on the y axis, created by the current of the river
vy = 0.549 m / s
time is a scalar, therefore the time it takes to cross the river is the same time it creates the displacement in e; Axis y
X axis
vₓ = x / t
t = x / vₓ
t = 1250 / 1.6
t = 781.25 s
in this time a distance has descended
y = v_y t
y = 0.549 781.25
y = 428.9 m
Which option tells the forces that influence the movement of earths plates
Answer:
Gravity
Explanation:
Identify and sketch all the external forces acting on the chair. Because the chair can be represented as a point particle of mass m, draw the forces with their tails centered on the black dot in the middle of the chair. Be certain to draw your forces so that they have the correct orientation. Draw the vectors starting at the black dot. The location and orientation of the vectors will be graded. The length of the vectors will not be graded.
Answer:
y axis normal (N) and the weight (W)
x axis pplied force (F) and friction force (fr)
Explanation:
If we have a chair on a horizontal surface, the normal (N) and the weight (W) of the body act on the vertical axis.
On the x axis, the applied force (F) acts in the direction of movement and the friction force (fr) in the opposite direction of movement.
In this exercise we assume that the body tends to move to the right, all the forces can be seen in the adjoint
5.0 L/s water flows through a horizontal pipe that narrows smoothly from 10.0 cm diameter to 5.0 cm diameter. A pressure gauge in the narrow section reads 50 kPa. What is the reading of the pressure gauge in the wide section
Solution :
The volume rate of flow is given by : R = 5.0 L/s
[tex]$ = 5.0 \times 10^{-3} \ m^3/s$[/tex]
The radius of the pipe, [tex]$r_1= 5 \times 10^{-2} \ m$[/tex]
∴ [tex]$ 5.0 \times 10^{-3} = \pi (2.5 \times 10^{-2})^2 v_1$[/tex]
then, [tex]$v_1 = \frac{5.0 \times 10^{-3}}{(3.14)(5 \times 10^{-2})^2}$[/tex]
= 0.637 meter per second
Then the speed of the water at wider section,
[tex]$R=A_1v_1$[/tex]
Similarly, the speed of water at narrow pipe.
The radius of the [tex]$r_2 = 2.5 \times 10^{-2}$[/tex] m
[tex]$5.0 \times 10^{-3} = \pi (2.5 \times 10^{-2})^2 v_1$[/tex]
then, [tex]$v_2 = \frac{5.0 \times 10^{-3}}{(3.14)(2.5 \times 10^{-2})^2}$[/tex]
= 2.55 meter per sec
Now from Bernoulli's theorem,
[tex]$P_1 + \frac{1}{2} \rho v_1^2 =P_2 + \frac{1}{2} \rho v_2^2 $[/tex]
[tex]$P_1 = P_2 + \frac{1}{2} \rho (v_2^2 - v_1^2)$[/tex]
[tex]$= 50 \kPa + (0.5)(10^3)[(2.55)^2-(0.637)^2]$[/tex]
= 50 kPa + 3.05 kPa
= 53.05 kPa
or 53000 Pa
This question involves the concepts of Bernoulli's Theorem and Volumetric Flowrate.
The pressure reading in the wide section is "53.05 KPa".
First, we will use the volumetric flow rate to find the velocities of the water at wide and narrow sections.
[tex]V = A_1v_1[/tex]
where,
V = Volumetric Flow Rate = 5 L/s = 5 x 10⁻³ m³/s
r₁ = radius of narrow section = 5 cm/2 = 2.5 cm = 0.025 m
A₁ = Area of narrow section = πr₁² = π(0.025 m)²
v₁ = velocity at narrow section = ?
Therefore,
[tex]5\ x\ 10^{-3}\ m^3=[\pi(0.025\ m)^2](v_1)\\\\v_1=\frac{5\ x\ 10^{-3}\ m^3}{\pi (0.025\ m)^2}\\\\v_1=2.55\ m/s\\[/tex]
Similarly,
[tex]V = A_2v_2[/tex]
where,
V = Volumetric Flow Rate = 5 L/s = 5 x 10⁻³ m³/s
r₂ = radius of wide section = 10 cm/2 = 5 cm = 0.05 m
A₂ = Area of wide section = πr₁² = π(0.05 m)²
v₂ = velocity at wide section = ?
Therefore,
[tex]5\ x\ 10^{-3}\ m^3=[\pi(0.05\ m)^2](v_2)\\\\v_2=\frac{5\ x\ 10^{-3}\ m^3}{\pi (0.05\ m)^2}\\\\v_2=0.64\ m/s\\[/tex]
Now, we will use Bernoulli's Theorem to find out the pressure wide section.
[tex]P_1 + \frac{1}{2}\rho v_1^2=P_2 + \frac{1}{2}\rho v_2^2[/tex]
where,
[tex]\rho[/tex] = density of water = 1000 kg/m³
P₁ = pressure in narrow section = 50 KPa = 50000 Pa
P₂ = pressure in wide section = ?
Therefore,
[tex]50000\ Pa + \frac{1}{2}(1000\ kg/m^3)(2.55\ m/s)^2=P_2 + \frac{1}{2}(1000\ kg/m^3)(0.64\ m/s)^2[/tex]
P₂ = 50000 Pa + 3251.25 Pa - 204.8 Pa
P₂ = 53046.45 Pa = 53.05 KPa
Learn more about Bernoulli's Theorem here:
https://brainly.com/question/13098748?referrer=searchResults
The attached picture shows Bernoulli's Theorem.
A 70 kg Throckmorton was riding his skateboard when a small, but juicy 0.001 kg beetle hits the front of his helmet, splattering, obstructing his view. Who experienced the greatest change in momentum?
Answer:
The beetle
Explanation:
The beetle is correct because of the the force of the Throckmortan was a lot heavier and thus making the beetle feel the force.
Momentum before = momentum after
m₁u₁ + m₂u₂ = m₁v₁ + m₂v₂
(70.0 kg) (3.0 m/s) + (2.0 kg) (3.0 m/s) = (70.0 kg) (3.1 m/s) + (2.0 kg) v
210 kg m/s + 6 kg m/s = 217 kg m/s + (2.0 kg) v
-1 kg m/s = (2.0 kg) v
v = -0.5 m/s
The skateboard's velocity is 0.5 m/s west. Hope I helped and have a good day!
________________________________________________________
前の勢い=後の勢い
m₁u₁+m₂u₂=m₁v₁+m₂v₂
(70.0 kg)(3.0 m / s)+(2.0 kg)(3.0 m / s)=(70.0 kg)(3.1 m / s)+(2.0 kg)v
210 kg m / s + 6 kg m / s = 217 kg m / s +(2.0 kg)v
-1 kg m / s =(2.0 kg)v
v = -0.5 m / s
スケートボードの速度は西に0.5m / sです。私が助けて、良い一日を過ごせることを願っています!
how is friction involved in the movement of space
Answer:
Friction can stop or slow down the motion of an object.
Explanation:
The slowing force of friction always acts in the direction opposite to the force causing the motion.
Based on the data, which statement describes the most reliable way to
encode and transmit data and tells why?
A. Digital waves are more reliable because they are less likely to
change when copied.
B. Analog waves are more reliable because they include a range of
values like the original.
C. Analog waves are more reliable because they are less likely to
change when copied.
D. Digital waves are more reliable because they are slightly different
from the original.
Answer:it’s A. right for ape x
Explanation:
Based on data, digital waves are more reliable because they are less likely to change when copied (Option A).
What is a wave?A wave is a periodic distortion capable of traveling through a suitable media (either air or water).
The waves can be classified according to their direction into transversal and perpendicular.In conclusion, based on data, digital waves are more reliable because they are less likely to change when copied (Option A).
Learn more on waves here:
https://brainly.com/question/15663649
#SPJ2
How do projectors project the color black?
Answer:
Projectors do not project the color black. This makes sense since black is really the absence of light, and you can't project something that does not exist. When a projector sends a beam of light on to a wall or a projector screen so that an image is formed on the wall or screen, the parts of the image that look black are really a very dim white color (which we sometimes call gray). - wtamu
Answer is:
Projectors do not project the color black.
A student stretches a spring, attaches a 1.20 kg mass to it, and releases the mass from rest on a frictionless surface. The resulting oscillation has a period of 0.750 s and an amplitude of 15.0 cm. Determine the oscillation frequency, the spring constant, and the speed of the mass when it is halfway to the equilibrium position.
Answer:
the speed of the mass when it is halfway to the equilibrium position is 1.26 m/s
Explanation:
Given that;
mass of the object m = 1.20 kg
period of oscillation = 0.750 s
Amplitude ( A/x) = 15.0 cm = 0.15 m
now;
a) Determine the oscillation frequency;
oscillation frequency f = 1/T
we substitute
f = 1 / 0.750 s
f = 1.33 Hz
Therefore, the oscillation frequency is 1.33 Hz
b) Determine the spring constant;
we solve for spring constant from the following expression;
T = 2π√(m/k)
k = 4π²m / T²
so we substitute
k = (4π² × 1.20) / (0.750)²
k = 47.3741 / 0.5625
k = 84.22 N/m
Therefore, the spring constant is 84.22 N/m
c) determine the speed of the mass when it is halfway to the equilibrium position
So, at equilibrium, the energy is equal to K.E
such that;
1/2mv² = 1/2kx²
mv² = kx²
v² = kx² / m
v = √( kx²/m)
we substitute
v = √( 84.22×(0.15 m)²/ 1.2 )
v = √( 1.89495 / 1.2 )
v = √ 1.579125
v = 1.26 m/s
Therefore, the speed of the mass when it is halfway to the equilibrium position is 1.26 m/s
Which of the following is NOT a characteristic of noble gases?
unreactive
odorless
solid at room temperature
colorless
Astronomers study the electromagnetic radiation emitted by distant stars and planets to determine things like: how far away they are, their temperatures and speed, etc. Based on what you learned in this class, explain why the NASA Hubble Space Telescope is better for observing the electromagnetic radiation emitted from stars and planets at 560 km above sea level compared to the Keck telescope in Hawaii, which is 4 km above sea level
Answer:
This same Hawaii telescope, which would be 4 km across water level, can't provide an appropriate version of distanced planetary bodies. A further overview is provided below.
Explanation:
The surface area of that same earth's orbit seems to be approximately 480 km heavy. The atmosphere isn't translucent to the only certain wavelength range of the radioactivity. Not because all-stars, as well as gliders, emit specific wavelengths, but several of them generate ultraviolet as well as infrared. Those same radiations have either been mediated primarily as well as passes through the atmosphere. Due to the Blockage, they can't even be interpreted with such a similar quality unless the telescope would be positioned throughout the portion of the atmosphere.During a storm, a car traveling on a level horizontal road comes upon a bridge that has washed out. The driver must get to the other side, so he decides to try leaping the river with his car. The side of the road the car is on is18.0 m above the river, while the opposite side is only1.8 m above the river. The river itself is a raging torrent69.0 m wide.Part AHow fast should the car be traveling at the time it leaves the road in order just to clear the river and land safely on the opposite side?Part BWhat is the speed of the car just before it lands on the other side?
Answer:
Part A: The speed the car should be travelling when leaping the river is approximately 37.948 m/s
Part B: The speed of the car just before it lands is approximately 41.92345 m/s
Explanation:
The parameters of the car attempting leaping the river are;
The height of the car over the river = 18 m
The height of the opposite side of the bridge above the river = 1.8 m
The width of the river, x = 69.0 m
Part A
The time, 't' it would take the car to fall from 18 m above the river to 1.8 m above the river is given as follows;
t = √(2·h/g)
Where;
h = The height of the fall = 18 m - 1.8 m = 16.2 m
g = The acceleration due to gravity = 9.8 m/s²
∴ t = √(2×16.2 m/(9.8 m/s²)) = (9/7)·√2 s
The horizontal speed, 'vₓ', with which the car should be travelling at the time it leaves the road in order just to clear the river and land safely on the opposite side is given as follows;
vₓ = x/t = 69.0 m/((9/7)·√2 s) = (161/6)·√2 m/s ≈ 37.948 m/s
The horizontal speed the car should be travelling when leaping the river, vₓ ≈ 37.948 m/s
Part B;
The vertical velocity of the car is given as follows;
[tex]v_y[/tex]² = [tex]u_y[/tex]² + 2·g·h
∴ [tex]v_y[/tex]² =2·g·h = 2 × 9.8 m/s² × 16.200 m = 317.52m²/s²
[tex]v_y[/tex] = √(317.52 m²/s²) = (63/5)·√2 ≈ 17.819 m/s
The magnitude of the speed of the car, 'v', just before it lands is given using Pythagoras' theorem for resultant vectors as follows;
v = √([tex]v_y[/tex]² + vₓ²) = √(317.52 m²/s² +((161/6)·√2 m/s)²) ≈ 41.92345 m/s
The speed of the car just before it lands, v ≈ 41.92345 m/s.
NEED HELP WITH THIS PLEASE
Answer:
A
Explanation:
6 An object can never have
A. a positive speed.
B. a negative speed.
C. a positive velocity.
D. a negative velocity.
Answer:
B
Explanation:
Speed is the magnitude of the velocity vector, so it can never be negative.
An object can never have a negative velocity. Therefore, option (D) is correct.
What is velocity?Velocity is a vector quantity that describes an object's speed and direction of motion. If an object is moving in a positive direction, it has a positive velocity. If it is moving in the opposite direction, it has a negative velocity.
However, an object can never have a negative speed. Speed is a scalar quantity that describes an object's rate of motion, and it is always positive. The speed of an object can be positive or negative, depending on the direction of its velocity, but the magnitude of its speed is always positive.
Learn more about velocity, here:
https://brainly.com/question/18084516
#SPJ6
16. An object has a gravitational potential energy 41,772.5 Jof and has a mass of 1550 kg. How high is it
above the ground?
Plz help
Answer:
2.75 m.
Explanation:
From the question given above, the following data were obtained:
Potential energy (PE) = 41772.5 J
Mass (m) of object = 1550 kg
Height (h) =?
Potential energy is the energy possess by an object due to its location. Mathematically, potential energy is expressed as shown below:
PE = mgh
Where
PE => potential energy
m => mass of the object
g => acceleration due to gravity
h => height to which the object is located.
With the above formula, we can obtain the height to which the object is located as follow:
Potential energy (PE) = 41772.5 J
Mass (m) of object = 1550 kg
Acceleration due to gravity (g) = 9.8 m/s²
Height (h) =?
PE = mgh
41772.5 = 1550 × 9.8 × h
41772.5 = 15190 × h
Divide both side by 15190
h = 41772.5 / 15190
h = 2.75 m
Thus, the object is located at 2.75 m above the ground.
how do positive and negative acceleration differ?
1. positive acceleration represents an object speeding up; negative acceleration represents an object slowing down
2. positive acceleration moves North or east; negative acceleration moves south or west
3. positive acceleration occurs when there is more velocity than speed; negative acceleration occurs when there is less velocity than speed.
4. positive acceleration occurs when an object changes its speed but not its direction; negative acceleration occurs when an object changes both its speed and direction
Answer:
1. positive acceleration represents an object speeding up; negative acceleration represents an object slowing down
Explanation:
Acceleration is clearly defined as the rate of change of velocity with time. When are body is speeding up as we say, it is accelerating. When a body is coming to rest, it is decelerating.
Positive acceleration occurs when the speed of a moving continues to increase.
Negative acceleration is when the speed of a moving body reduces drastically.
Starting from rest, a wheel with constant angular acceleration turns through an angle of 25 rad in a time t. What will its angular velocity be after 3t?
Answer:
θ = 225 rad
Explanation:
given data
angle = 25 rad
to find out
angular velocity after 3t?
solution
let angular acceleration α in t
θ = ω × t + 0.5 × α × t² ........................1
here ω = 0 (initial velocity )
so put this value here
25 = 0 + 0.5 × α × t² ..........................2
α = 25 ÷ (0.5 t²)
α = 50 ÷ t² .........................3
now here we take in 3t
θ = ω × 3t + 0.5 × α × (3t)²
for ω = 0
θ = 0 + 0.5 × α × 9t²
now put value in eq 2
so
θ = (0.5) × (50 ÷ t²) × (3t)²
θ = 25 × 9
θ = 225 rad
true or false solubility can be used to identify an unknown substance
Which of the following sentences is an example concerns smerne might have at lunchtime?
I would be to have brocoll stead of fres,
I wonder if my chicken is ooked all the way
I have never ordered smething I did not ke,
of ordered a salad with the dressing on the site
Answer:
yes
Explanation:
becausw yesnssjsdkwww
Two balls are thrown against a wall with the same velocity. The first ball is made of rubber and bounces straight back with some non-zero speed. The second ball is made of clay and sticks to the wall after impact. If we assume the collision time was the same for each ball, which ball experienced a greater average acceleration during the collision with the wall? A. the average acceleration was the sameB. the clay ball C. there is not enough information D. the rubber ball
Answer:
A. the average acceleration was the same
Explanation:
Acceleration is calculated by finding the difference of the initial velocity from the final velocity (on impact, usually 0) and then dividing by the amount of time that took place. If we assume that both balls were thrown at the same initial force, and ended up hitting the wall at the same time then we can say that the average acceleration was the same. If the initial velocity was not the same then we would need the initial velocity of each ball in order to calculate the acceleration of each object and determine which had a greater acceleration.
A 0.500 cm diameter plastic sphere, used in a static electricity demonstration, has a uniformly distributed 44.0 pC charge on its surface. What is the potential near its surface
Answer:
Explanation:
Radius of sphere R = .250 x 10⁻² m
Potential on the surface V = k Q / R , where Q is charge on the surface , R is radius of the surface and k = 9 x 10⁹
Q = 44 x 10⁻¹² C
V = 9 x 10⁹ x 44 x 10⁻¹² / ( .25 x 10⁻²)
= 1584 x 10⁻¹ Volt .
= 158.4 Volt
Pulling a rubber band back and then letting it fly across the room is an example of
A. converting energy to work
B. converting elastic energy to gravitational
C. converting kinetic energy to potential
Answer:
b
Explanation:
because a elastic band uses elastic energy
Two loudspeakers are about 10 mm apart in the front of a large classroom. If either speaker plays a pure tone at a single frequency of 400 HzHz, the loudness seems pretty even as you wander around the room, and gradually decreases in volume as you move farther from the speaker. If both speakers then play the same tone together, what do you hear as you wander around the room
Answer:
I hear points of low volume sound and points of high volume of sound.
Explanation:
This is because, since the two sources of sound have the same frequency and are separated by a distance, d = 10 mm, there would be successive points of constructive and destructive interference.
Since their frequencies are similar, we should have beats of high and low frequency.
So, at points of low frequency, the amplitude of the wave is smallest and there is destructive interference. The frequency at this point is the difference between the frequencies from both speakers. Since the frequency from both speakers is 400 Hz, we have, f - f' = 400 Hz - 400 Hz = 0 Hz. So, the volume of the sound is low(zero) at these points.
Also, at points of high frequency, the amplitude of the wave is highest and there is constructive interference. The frequency at this point is the sum between the frequencies from both speakers. Since the frequency from both speakers is 400 Hz, we have, (f + f') = 400 Hz + 400 Hz = 800 Hz. So, the volume of the sound is high at these points.
So, as you wander around the room, I should hear points of high and low sound across the room.
Do You think History is the most important subject that deserves first place? Do you see a way that learning history could assist you in your future career?
yes
Explanation:
history is an important class and it helps to you understand what went on in the past so that we can learn from our mistakes and help us grow
HELP ASAP PLS
A balloon with a positive charge will stick to a wall that has a negative charge.
What force causes this?
A. Gravity
B. Electric force
C. Magnetic force
D. Air gesistance
What is the frequency of a wave of a light is with a wavelength of 4 x 10-7 m?
Answer:
7.5 × 10^14 Hz
Velocity of light = 3×10^8m/s
Frequency = (3×10^8)/(4 x 10^-7)
= 7.5 × 10^14 Hz