Answer:
The photosphere is the visible "surface" of the sun. So your answer would be C.
Explanation: its right
A mass of 3 kg stretches a spring 9m. The mass is acted on by an external force of 2 AND. The Mass moves in a medium that imparts a viscous force of 1 N when the speed of the mass is 4m/sec The mass is pulled down 8 cm below its equilibrium position, and then set in motion inthe upward direction with a velocity of 5 m/sec. State the initial value problem describing the motion of the mass. DO NOT SOLVE.
Answer:
k y -b [tex]\frac{dy}{dt}[/tex]dy / dt = m [tex]\frac{d^2y}{dt^2}[/tex]
give us some initial conditions
1) friction force fr = 1N when v = 4m / s
2) an initial displacement of x = 0.08 m for t=0 s
Explanation:
In this exercise, you are asked to state the problem you are posing. We are going to find the equation of motion for this exercise. Let's start with Newton's second law
Let's set a reference system with the y-axis in a vertical and positive direction upwards.
We have four forces: an external downward force, negative in sign, the but that goes down and is negative, the Hook force that goes up and is positive and the friction force that opposes the movement, in this case it goes down being negative
let's write Newton's second law
F_e -F -fr - W = m a
where
F_e = -kDy = - k y
fr = - b v = -b dy / dt
W = mg
we substitute for the specific case, that is, using the signs
k y -b [tex]\frac{dy}{dt}[/tex] - m g - F = m [tex]\frac{d^2y}{dt^2}[/tex]
In the initial condition of the problem, before starting the movement, the friction force is zero and the acceleration is also zero
k y - m g - F = 0
from this equation you can find the spring constant, y= 9m and F=2 N
It is not clear if when the movement starts this external force becomes zero, but since it balances the weight we can eliminate the two forces that have the same magnitude and opposite direction, so the equation remains
k y - b [tex]\frac{dy}{dt}[/tex]dy / dt = m [tex]\frac{d^2y}{dt^2}[/tex]
give us some initial conditions
1) friction force fr = 1N when v = 4m / s
2) an initial displacement of x = 0.08 m for t=0 s
therefore, to initiate the movement, a small external force F 'is applied that moves the system to a new equilibrium position and this small force F' is made zero, thus initiating an oscillatory movement, described by the equation.
k y -b [tex]\frac{dy}{dt}[/tex]dy / dt = m [tex]\frac{d^2y}{dt^2}[/tex]
This is a differential equation of the second degree, therefore it needs two initial conditions for its complete solution
The initial amount of displacement corresponds to the amplitude of movement A = 0.08 m
To increase the potential energy of the system, what did you have to do?
Answer:
You can use work to add kinetic energy to a system or to increase potential energy in the system.
Explanation:
Potential energy stored in any system can be released as kinetic energy. Kinetic energy can be transformed to do work or to increase potential energy.
hope this helped
Please help I will mark you brainliest
I believe the answer is a
Tony ran 600 meters in 60 seconds. What was Tony's speed during the
race?
Hi please zoom in to see it clearly, uh you don’t have to answer them all but it would be nice !!! (no links please) :)
Explanation:
Newton's second law of motion states that the external force is directly proportional to the rate of change of momentum. Mathematically, Newton's second law of motion is given by :
F = ma
Where
m is the mass and a is the acceleration
If there is a smaller mass, it would need a weaker force to accelerate it as the force is directly proportional to the mass. Hence, the correct option is (d).
What happens to a light wave that is absorbed by matter
Answer:
In absorption, the frequency of the incoming light wave is at or near the energy levels of the electrons in the matter. The electrons will absorb the energy of the light wave and change their energy state.
Explanation:
A rifle can shoot a 4.00 g bullet at a speed of 998 m/s. Find the kinetic energy of the bullet. What work is done on the bullet if it starts from rest?
Answer:
1992.008J
Explanation:
explain how renewable energy source help in the reducing the effects of global warming?
Answer:
Renewable energy minimizes carbon pollution and has a much lower impact on our environment. And it's having its moment in the sun. "Giving more New Yorkers access to renewable energy can allow them to reduce their own energy bills while reducing stress on the grid and demand for fossil fuel power.
Hi please zoom in to see it clearly, uh you don’t have to answer them all but it would be nice !!! (no links please) :D
The angle between reflected ray and the normal line is
Answer:
Explanation:
angle of incidence.
A +3.4 x 10-6 C test charge experiences forces from two other nearby charges: a 3 N force due east and a 15 N force due west. What are the magnitude and direction of the electric field st the location of the test charge?
Answer:
3.53×10⁶ N/c due west
Explanation:
From the question
E = F'/q........................ Equation 1
Where E = Electric Field, F = Net Force, q = Charge.
But,
F' = F₂-F₁...................... Equation 2
Substitute equation 2 into equation 1
E = (F₂-F₁)/q................ Equation 3
Given: F₁ = 3 N due east, F₂ = 15 N due west, q = 3.4×10⁻⁶ C
Substitute these values into equation 1
E = (15-3)/(3.4×10⁻⁶)
E = 12/(3.4×10⁻⁶)
E = 3.53×10⁶ N/c due west
which particle have a mass of 1 u
Answer:
Explanation:
proton
A solenoid of 2100 turns, area 10 cm2, and length 30 cm carries a current of 4.0 A. (a) Calculate the magnetic energy stored in the solenoid from 1/2 LI 2. J [2 points] 0 attempt(s) made (maximum allowed for credit
Answer:
E = 0.1472 J
Explanation:
Given that,
The number of turns in the solenoid, N = 2100
Area of the solenoid, A = 10 cm² = 0.001 m²
The length of the solenoid, l = 30 cm = 0.3 m
Current in the solenoid, I = 4 A
We need to find the magnetic energy stored in the solenoid. The expression for the stored energy is :
[tex]E=\dfrac{1}{2}LI^2[/tex]
Where
L is self inductance of the solenoid,
[tex]L=\dfrac{\mu_oN^2A}{l}\\\\L=\dfrac{4\pi \times 10^{-7}\times 2100^2\times 0.001}{0.3}\\\\L=0.0184\ H[/tex]
So,
[tex]E=\dfrac{1}{2}\times 0.0184\times 4^2\\\\E=0.1472\ J[/tex]
So, 0.1472 J of energy is stored in the solenoid.
Hand pushes on a table with a force of 35n forward.reaction force
Answer:
como ías
Explanation:
At which point is there the most potential energy? At which point is there the most kinetic energy?
A. Potential energy A; Kinetic energy B
B. Potential energy B; Kinetic energy D
C. Potential energy A; Kinetic energy D
D. Potential energy C; Kinetic energy D
Answer:
The cart mark (a) has the most potential energy and the cart marked (b) has the most kinetic energy
PLEASE ANSWER WITH ACTUAL ANSWER AND I WILL MARK BRAINLIEST (IF YOU GIVE ME A SCAMMY ANSWER I WILL REPORT YOU!!!)
A student wants to determine the local value of the gravitational field strength, g , in their classroom. Which of the following experimental set-ups would allow a student to calculate the magnitude of the gravitational field strength using only the quantities measured?
Select TWO answers.
A: Run a lab cart down an inclined plane; measure the length of the ramp and the time it takes the cart to reach the bottom.
B: Hang a known mass from a spring scale; measure the spring scale reading when the mass is at rest.
C: Accelerate a lab cart horizontally; measure the mass of the cart and its acceleration.
D: Drop a heavy metal ball; measure the drop height and the time it takes the ball to hit the ground.
Answer:
Most likely (B)
Explanation:
B in the passage is the most representative out of all your choices and it has evidence from the passage
Hope dis helps Jit!
Sorry i forgot to type C
B and C both measure mass while the others are calculations and are bias
The following experimental set-ups would allow a student to calculate the magnitude of the gravitational field strength using only the quantities measured:
Hang a known mass from a spring scale; measure the spring scale reading when the mass is at rest.Drop a heavy metal ball; measure the drop height and the time it takes the ball to hit the ground.What is gravitational field?A gravitational field is a model used in physics to explain the effects that a large thing has on the area surrounding it, exerting a force on smaller, less massive bodies.
When a known mass from a spring scale is hung; by e; measuring the spring scale reading when the mass is at rest, the magnitude of the gravitational field strength ( reading/mass) can be calculated.
When a heavy metal ball is dropped, by measuring e the drop height and the time it takes the ball to hit the ground, the magnitude of the gravitational field strength ( h = gt²/2) can be calculated. Hence, option (B) and option (D) is correct.
Learn more about gravitational field here:
https://brainly.com/question/26690770
#SPJ2
A woman shouts at a boy who is underwater what happens to the speed of the sound wave as it moves from the air into the water
Answer:
B. it increases
Explanation:
As shown in the table provided, the speed of sound in water (1493 m/s) is greater than the speed of sound in air (346 m/s).
Answer:
B is the correct answer.
Explanation:
NEED TO SUBMIT THIS IN 10 MINS, PLS HELP!!!!
Answer:
Your answer is B
because it's on sneel's law.
that is sin of incident ray / sin of refracted ray is refractive index
Please help me!
8. Give an example of a poor blackbody radiator and explain why it is not a good blackbody radiator.
9. Does a blackbody radiator emit light waves? Explain.
Answer:
A black body radiator is an idealized body that absorbs all incoming electromagnetic radiation (thus the name of "black body").
A black body radiator is an object that has a lot of thermal energy, and it irradiates its thermal energy in the form of black body radiation (thermal radiation emitted by a black body).
a) Then, we could go to the trivial case of a mirror, a mirror is a poor blackbody radiator because a mirror reflects most of the incoming electromagnetic radiation, thus, a mirror is a really bad approximation for a black body, then a mirror is a poor black body radiator.
b) Any electromagnetic wave is a light wave (there exists "light" that we can not see). A black body radiator irradiates energy, and this radiation is in the form of electromagnetic waves, which are in essence, light waves.
Answer:
A black body radiator is an idealized body that absorbs all incoming electromagnetic radiation (thus the name of "black body").
A black body radiator is an object that has a lot of thermal energy, and it irradiates its thermal energy in the form of black body radiation (thermal radiation emitted by a black body).
a) Then, we could go to the trivial case of a mirror, a mirror is a poor blackbody radiator because a mirror reflects most of the incoming electromagnetic radiation, thus, a mirror is a really bad approximation for a black body, then a mirror is a poor black body radiator.
b) Any electromagnetic wave is a light wave (there exists "light" that we can not see). A black body radiator irradiates energy, and this radiation is in the form of electromagnetic waves, which are in essence, light waves.
Explanation:
Easy physics question help.!!!
Answer: This is not easy lol
Explanation:
Larry is making a model of the Solar System. What objects will Larry need to put in his model of the Solar System? Name three types of objects. Describe where Larry should place Earth within the Solar System. es ) your answer below:
Answer:
1) It seems that he would need the central gravitational force
(the sun)
2) Also the planets would need to be included (orbits around the sun)
Mercury, Venus, Earth, Mars, Jupiter, Saturn, etc.
3. Then, many of the planets have significant objects (moons) rotating about them.
Those would seem to be objects to be included in a model of the solar system.
1) He would need the central gravitational force (the sun)
2) The planets would need to be included: Mercury, Venus, Earth, Mars, Jupiter, Saturn, etc.
3) Many of the planets have specific moons rotating about them.
Larry should put the Earth between the planets Venus, and Mars.
A fisherman notices that his boat is moving up and down periodically without any horizontal motion, owing to waves on the surface of the water. It takes a time of 2.60 s for the boat to travel from its highest point to its lowest, a total distance of 0.630 m . The fisherman sees that the wave crests are spaced a horizontal distance of 5.70 m apart.
Required:
a. How fast are the waves traveling?
b. What is the amplitude of each wave?
c. If the total vertical distance traveled by the boat were 0.30 m but the other data remained the same, how would the answers to parts (a) and (b) be affected?
Answer:
a) v = 1.1 m/s
b) A = 0.315 m
c) v = 1.1 m/s A= 0.15 m
Explanation:
a)
In any travelling wave, there exists a fixed relationship between the propagation speed, the wavelength and the frequency, as follows:[tex]v = \lambda * f (1)[/tex]
If the wave crests are spaced a horizontal distance of 5.7 m apart, this means that the wavelength of the wave is just the same, i.e., 5.70 m.Regarding the frequency, we know that the frequency is just the inverse of the period, i.e., the time needed to complete one oscillation.If it takes a time of 2.60 s to go from the highest point to the lowest, the time needed to complete an oscillation (the period T) will be just double of this time:⇒ T = 2.60 s * 2 = 5.20 s (2)Since we have now T, we can find the frequency f as follows:[tex]f = \frac{1}{T} = \frac{1}{5.20s} = 0.19 Hz (3)[/tex]
Replacing f and λ in (1) we get:[tex]v = \lambda * f = 5.70 m * 0.19 Hz = 1.10 m/s (4)[/tex]
b)
The amplitude of the wave is just the amount that the water aparts from its equilibrium level, which is just the half of the distance between its highest point and the lowest one, as follows:[tex]A = \frac{0.630m}{2} = 0.315 m (5)[/tex]
c)
Part a) will not be affected by the new amplitude, because we have showed that the speed is independent of the amplitude, so v can be written as follows:v = 1.10 m/s (6)
Part b) will change , due to the amplitude changes. If the total vertical distance traveled by the boat is 0.30 m, by the same token as explained in b), the new amplitude will be just half of this, as follows:[tex]A = \frac{0.30m}{2} = 0.15 m (7)[/tex]
When you cool a gas, how does this affect the de Broglie wavelength of the gas atoms? When you cool a gas, how does this affect the de Broglie wavelength of the gas atoms? Being cooled, the gas atoms slow down so that their de Broglie wavelength will increase. Being cooled, the gas atoms slow down so that their de Broglie wavelength will decrease. The de Broglie wavelength will remain the same because it does not depend on temperature.
Answer:
The de Broglie wavelength will remain the same because it does not depend on temperature.
Explanation:
de Broglie wavelength of a particle is independent of the temperature and hence the properties of emitted particle such as photoelectric effect, radioactive radiation etc. does not depend on the temperature.
Also, until unless the kinetic energy of a moving particle is not driven by the
thermal energy, the de Broglie wavelength is independent of the temperature
Acep
we
White light is incident normally on a thin soap film (n = 1.33) suspended in air:
(a) What are the two minimum thickness that will destructively
reflect yellow light
of wavelength 590 nm?
I hope this will help you. Here is the link http://web.physics.ucsb.edu/~phys6c/summer2006/hw4solutions
the atom of an element x has 21protrons and 23neutrons. What is the
(a) Electron number
(b) Mass number
(c) Neutron number
Assume a device is designed to obtain a large potential difference by first charging a bank of capacitors connected in parallel and then activating a switch arrangement that in effect disconnects the capacitors from the charging source and from each other and reconnects them all in a series arrangement. The group of charged capacitors is then discharged in series. What is the maximum potential difference that can be obtained in this manner by using ten 500
Answer:
8 kV
Explanation:
Here is the complete question
Assume a device is designed to obtain a large potential difference by first charging a bank of capacitors connected in parallel and then activating a switch arrangement that in effect disconnects the capacitors from the charging source and from each other and reconnects them all in a series arrangement. The group of charged capacitors is then discharged in series. What is the maximum potential difference that can be obtained in this manner by using ten 500 μF capacitors and an 800−V charging source?
Solution
Since the capacitors are initially connected in parallel, the same voltage of 800 V is applied to each capacitor. The charge on each capacitor Q = CV where C = capacitance = 500 μF and V = voltage = 800 V
So, Q = CV
= 500 × 10⁻⁶ F × 800 V
= 400000 × 10⁻⁶ C
= 0.4 C
Now, when the capacitors are connected in series and the voltage disconnected, the voltage across is capacitor is gotten from Q = CV
V = Q/C
= 0.4 C/500 × 10⁻⁶ F
= 0.0008 × 10⁶ V
= 800 V
The total voltage obtained across the ten capacitors is thus V' = 10V (the voltages are summed up since the capacitors are in series)
= 10 × 800 V
= 8000 V
= 8 kV
Which two chemical equations show double-replacement reactions?
A. C+02 - CO2
B. 2Li + CaCl2 - 2LiCl + Ca
I C. Ca(OH)2 + H2S04 - CaSO4 + 2H20
D. Na2CO3 + H2S - H2CO3 + Na2S
The two chemical equations show double-replacement reactions are Ca(OH)2 + H2S04 - CaSO4 + 2H20 and Na2CO3 + H2S - H2CO3 + Na2S.
What is double replacement reaction?A double replacement reaction have two ionic compounds that are exchanging anions or cations.
From the given options, we can choose the following based on their exchange of anions or cations.
Ca(OH)2 + H2S04 - CaSO4 + 2H20Na2CO3 + H2S - H2CO3 + Na2SThus, the two chemical equations show double-replacement reactions are Ca(OH)2 + H2S04 - CaSO4 + 2H20 and Na2CO3 + H2S - H2CO3 + Na2S.
Learn more about double replacement reaction here: https://brainly.com/question/14281077
#SPJ2
One hazard of space travel is debris left by previous missions. There are several thousand objects orbiting Earth that are large enough to be detected by radar, but there are far greater numbers of very small objects, such as flakes of paint. The force exerted by a 0.100-mg chip of paint that strikes a spacecraft window at a relative speed of 4.00 x 103 m/s, given the collision lasts 6.00 x 10-8 s is Fill input: x 106 N.
Answer:
The correct answer is "6666.67 N".
Explanation:
The given values are:
Mass,
m = 0.100
Relative speed,
v = 4.00 x 10³
time,
t = 6.00 x 10⁻⁸
As we know,
⇒ [tex]F=m(\frac{\Delta v}{\Delta t} )[/tex]
On substituting the given values, we get
⇒ [tex]=0.100\times 10^{-6}(\frac{4\times 10^3}{6\times 10^{-8}} )[/tex]
⇒ [tex]=6666.67 \ N[/tex]
Help please. Question about a potential energy.
A wave has a frequency of 67 Hz and a wavelength of 7.1 meters. What is the speed of this
wave?
Answer:
475.7 m/s
Explanation:
Given,
Frequency ( f ) = 67 Hz
Wavelength ( λ ) = 7.1 m
To find : Speed ( v ) = ?
Formula : -
v = f λ
v
= 67 x 7.1
= 475.7 m/s
Therefore,
the speed of the wave is 475.7 m/s.