Answer:
When we have a current I, we will have a magnetic field perpendicular to this current.
Then if we have a wire in a "spring" form. then we will have a magnetic field along the center of this "spring".
Now suppose we put an iron object in the middle (where the magnetic field is) then we will magnetize the iron object.
Of course, the intensity of the magnetic field is proportional to the current, given by:
B = (μ*I)/(2*π*r)
Where:
μ is a constant, I is the current and r is the distance between to the current.
Now remember that for a resistor:
R = ρ*L/A
R is the resistance, ρ is the resistivity, which depends on the material of the wire, L is the length of the wire, and A is the cross-section of the wire.
If we increase the area of the wire (if we use a thicker wire).
And the relation between resistance and current is:
I = V/R
Where V is the voltaje.
Now, if we use a thicker wire, then the cross-section area of the wire increases.
Notice in the resistance equation, that the cross-section area is on the denominator, then if we increase the area A, the resistance decreases.
And the resistance is on the denominator of the current equation, then if we decrease R, the current increases.
If the current increases, the magnetic field increases, which means that we will have a stronger electromagnet.
A player kicks a football from ground level with an initial velocity of 27.0 m/s, 30.0° above the Horizontal. Find the distance the ball travels before it hits the ground.
Answer:
The horizontal distance traveled by the ball before it hits the ground is 64.42 m.
Explanation:
Given;
initial velocity, u = 27.0 m/s
angle of projection, θ = 30⁰
The horizontal distance traveled by the ball before it hits the ground is known as Range;
[tex]Range = \frac{u^2 sin(2\theta)}{g} \\\\Range = \frac{(27^2)sin(2 \times 30)}{9.8} \\\\Range = 64.42 \ m[/tex]
Therefore, the horizontal distance traveled by the ball before it hits the ground is 64.42 m.
You are designing a solenoid to produce a 2.0-kG magnetic field. You wish to wrap your insulated wire uniformly around a cardboard tube that is 8.0 cm in diameter and 58 cm in length, and you have a power supply that will allow you to pass a current of 2.5 A through the solenoid. Determine the total length of wire you will need in order to build the solenoid you have designed.
Answer:
92.7 km
Explanation:
Since the magnetic field due to a solenoid is given by B = μ₀Ni/L where μ₀ = permeability of free space = 4π × 10⁻⁷ H/m, N = number of turns of solenoid, L = length of cardboard tube = 58 cm = 0.58 m, , i = current in wire = 2.5 A and l = length of wire.
So, N = BL/μ₀i
Since B = 2.0 kG = 2.0 × 10³ G = 2.0 × 10³ × 10⁻⁴ T = 2.0 × 10⁻¹ T = 0.2 T
So, substituting the variables into the equation, we have
N = BL/μ₀i
N = 0.2 T × 0.58 m/(4π × 10⁻⁷ H/m × 2.5 A)
N = 1.16 Tm/(31.416 × 10⁻⁷ HA/m)
N = 0.0369 × 10⁷ turns
N = 0.0369 × 10⁷ turns
N = 3.69 × 10⁵ turns
length of wire l = NC where N = number of turns and C = circumference of tube = πD where D = diameter of tube = 8.0 cm = 0.08 m
So, l = NC
= NπD
= πND
= π × 3.69 × 10⁵ turns × 0.08 m
= 0.9274 × 10⁵ m = 9.274 × 10⁴ m
= 92.74 × 10³ m
= 92.74 km
≅ 92.7 km
The total legnth of the wire to built a solenoid will be 92.7 km
What is solenoid?A solenoid is a electromagnet in which the wires are wounded on the outer surface of the soft iron and then the current is passed so due to flow of the current the magnetic field generated around the wire.
Since the magnetic field due to a solenoid is given by
B = μ₀Ni/L
where
μ₀ = permeability of free space = 4π × 10⁻⁷ H/m,
N = number of turns of solenoid,
L = length of cardboard tube = 58 cm = 0.58 m, ,
i = current in wire = 2.5 A and
l = length of wire.
Since B = 2.0 kG = 2.0 × 10³ G = 2.0 × 10³ × 10⁻⁴ T = 2.0 × 10⁻¹ T = 0.2 T
So, substituting the variables into the equation, we have
[tex]N=\dfrac{BL}{\mu_oI}[/tex]
[tex]N=\dfrac{0.2\times 0.58}{4\pi\times 10^{-7} \times 2.5}[/tex]
[tex]N=\dfrac{1.16}{31.416\times 10^{-7}}[/tex]
N = 0.0369 × 10⁷ turns
N = 0.0369 × 10⁷ turns
N = 3.69 × 10⁵ turns
length of wire l = NC where N = number of turns and C = circumference of tube = πD where D = diameter of tube = 8.0 cm = 0.08 m
So, l = NC
= NπD
= πND
= π × 3.69 × 10⁵ turns × 0.08 m
= 0.9274 × 10⁵ m = 9.274 × 10⁴ m
= 92.74 × 10³ m
= 92.74 km
≅ 92.7 km
Hence the total legnth of the wire to built a solenoid will be 92.7 km
To know more about solenoid follow
https://brainly.com/question/26137834
A disk of known radius and rotational inertia can rotate without friction in a horizontal plane around its fixed central axis. The disk has a cord of negligible mass wrapped around its edge. The disk is initially at rest, and the cord can be pulled to make the disk rotate. Which of the following procedures would best determine the relationship between applied torque and the resulting change in angular momentum of the disk?
a. Pulling on the cord, exerting a force of 15 N for 2 s and then 25 N for 3 s, and measuring the final angular velocity of the disk
b. For five forces of different time intervals, pulling on the cord for 5 s, exerting a force of 15 N, and then measuring the angle through which the disk rotates in each case
c. For five forces of different time intervals, pulling on the cord for 5 s, exerting a force of 15 N, and then measuring the final angular velocity of the disk
d. For five forces of different magnitude, pulling on the cord for 5 s, and then measuring the final angular velocity of the disk
Pulling on the cord, exerting a force of 15 N for 2 s and then 25 N for 3 s, and measuring the final angular velocity of the disk.
What is torque?Torque is defined as the rate of change of angular momentum.[tex]\tau = \frac{dL}{dt} \\\\[/tex]
[tex]Fr = \frac{\Delta L}{\Delta t} \\\\Fr = \frac{\Delta m\omega ^2r}{\Delta t} \\\\F = \frac{\Delta m\omega ^2}{\Delta t}[/tex]
[tex]F = \frac{m\Delta \omega ^2}{\Delta t} \\\\F = \frac{m(\omega _f^2 - \omega _i^2)}{t_2 - t_1}[/tex]
where;
[tex]\omega _i[/tex] is the initial angular velocity
[tex]\omega _f[/tex] is the final angular velocity
Since the disk is initial at rest, applying a force such as 15 N gives the disk its first angular velocity and applying 25 N force for 3 seconds gives the disk its final angular velocity.
Thus, the best procedure to determine the relationship between applied torque and the resulting change in angular momentum of the disk is
Pulling on the cord, exerting a force of 15 N for 2 s and then 25 N for 3 s, and measuring the final angular velocity of the disk.Learn more about torque on a disk here: https://brainly.com/question/25482609
What is the approximate size of the Earth's magnetic field? (dont ask me to specify thats what the question is and im as confused as heck too)
Answer:
The Earth's magnetic field intensity is roughly between 25,000 - 65,000 nT (.25 -.65 gauss).
Explanation:
To measure the Earth's magnetism in any place, we must measure the direction and intensity of the field. The Earth's magnetic field is described by seven parameters. These are declination (D), inclination (I), horizontal intensity (H), the north (X), and east (Y) components of the horizontal intensity, vertical intensity (Z), and total intensity (F). The parameters describing the direction of the magnetic field are declination (D) and inclination (I). D and I are measured in units of degrees, positive east for D and positive down for me. The intensity of the total field (F) is described by the horizontal component (H), vertical component (Z), and the north (X) and east (Y) components of the horizontal intensity. These components may be measured in units of gauss but are generally reported in nanoTesla (1nT * 100,000 = 1 gauss). The Earth's magnetic field intensity is roughly between 25,000 - 65,000 nT (.25 - .65 gauss). Magnetic declination is the angle between magnetic north and true north. D is considered positive when the angle measured is east of true north and negative when west. The magnetic inclination is the angle between the horizontal plane and the total field vector, measured positive into Earth. In older literature, the term “magnetic elements” is often referred to as D, I, and H.
what happens to the work done when a force is doubled and the distance moved remain the same?
Answer:
It is doubled
Explanation:
f2=2f1
x1=x2=x
W1=f1*x1=f1*x
W2=f2*x2=f2*x=2*(fi*x)=2*W1
A 45.0-kg girl is standing on a 168-kg plank. The plank, originally at rest, is free to slide on a frozen lake, which is a flat, frictionless surface. The girl begins to walk along the plank at a constant velocity of 1.55 m/s to the right relative to the plank.
Required:
What is the velocity of the plank relative to the surface of the ice?
Answer:
The speed of the plank relative to the ice is:
[tex]v_{p}=-0.33\: m/s[/tex]
Explanation:
Here we can use momentum conservation. Do not forget it is relative to the ice.
[tex]m_{g}v_{g}+m_{p}v_{p}=0[/tex] (1)
Where:
m(g) is the mass of the girlm(p) is the mass of the plankv(g) is the speed of the girlv(p) is the speed of the plankNow, as we have relative velocities, we have:
[tex]v_{g/b}=v_{g}-v_{p}=1.55 \: m/s[/tex] (2)
v(g/b) is the speed of the girl relative to the plank
Solving the system of equations (1) and (2)
[tex]45v_{g}+168v_{p}=0[/tex]
[tex]v_{g}-v_{p}=1.55[/tex]
[tex]v_{p}=-0.33\: m/s[/tex]
I hope it helps you!
The scanning process and magnetic lenses used in a scanning electron microscope often results in fair to poor resolution and "fuzzy" images.
(A)True
(B)False
Answer:
(B)False is the answer.
Explanation:
180 N
40 kg
140 N
Net Force =
Also how do you find the net force?
Answer:
720N
Explanation:
180+(40×10)+140=720 remember we can only add with same units ;1kg=10N therefore 40 kg=(40×10)N=400N
The net force would be the summation of all the forces in addition to the weight force of the 40 kg weight, thus the net force of all the forces would come out to be 712.4 Newtons.
What is Newton's second law?Newton's Second Law states that The resultant force acting on an object is proportional to the rate of change of momentum.
F = ma
As given in the problem we have to find the net force,
Let us assume the acceleration due to gravity would be 9.81 m/s².
The force generated by the 40-kilogram weight =40 ×9.81 Newtons.
The force generated by the 40-kilogram weight = 392.4 Newtons
Net force = 180 + 140 +392.4
=712.4 Newtons
Thus, the net force of all the forces would come out to be 712.4 Newtons.
Learn more about Newton's second law from here,
brainly.com/question/13447525
#SPJ2
Black holes result from
Answer:
supernova explosion or death of massive star
Explanation:
"Most black holes form from the remnants of a large star that dies in a supernova explosion."
explain melting and freezing using the kinetic theory of matter
As a liquid is cooled its molecules lose kinetic energy and their motion slows. When they've slowed to where intermolecular attractive forces exceed the collisional forces from random motion, then a phase transition from liquid to solid state takes place and the material freezes
Hope it helps u
FOLLOW MY ACCOUNT PLS PLS
Two rubber bullets (each of the same mass) are fired at the same velocity towards two different blocks of equal mass. One block is made of clay and the bullet gets stuck in it, the clay block bullet begins to move in the direction the bullet was fired. The other block is made of aluminum and the bullet bounces off the block, the aluminum block also begins to move in the direction the bullet was fired. Which block (clay or aluminum) will move with greater velocity after being struck by the bullet
Answer:
Aluminum board will move with a higher velocity
Explanation:
The velocity of the block will be higher when the impulse imparted by the bullet is higher.
In case of bullet bouncing off, the impulse imparted on the aluminum board is high and hence, it will move with a high velocity as compared to that of the clay board.
It is measured that 3/4 of a body's volume is submerged in oil of density 800kg/m³
Complete question:
It is measured that 3/4 of a body's volume is submerged in oil of density 800kg/m³. What is the specific gravity of oil?
Answer:
The specific gravity of the oil is 0.8.
Explanation:
Given;
density of the oil, [tex]\rho_o[/tex] = 800 kg/m³
density of water, [tex]\rho_w[/tex] = 1000 kg/m³
The specific gravity of any substance is the ratio of the substance density to the density of water.
Specific gravity of the oil = density of the oil / density of water
Specific gravity of the oil = 800/1000
Specific gravity of the oil = 0.8
Therefore, the specific gravity of the oil is 0.8.
Which structure is represented by letter C?
Choose 1 answers
A. Cell wall
B. Cell membrane
C. Ribosome
D. Cytosol
Answer: C. Ribosome
Explanation: Ribosome is responsible for protein synthesis. I got it right on khan academy :) hope this helps have a blessed day.
The structure which is represented by the letter C is known as free ribosomes. Thus, the correct option for this question is C.
What are Ribosomes?Ribosomes may be defined as a type of cell organelle which is spherical and glandular in shape. They occur freely in the matrix or remain bound with ER.
The major components of ribosomes may include RNA and protein. Ribosomes were first discovered by Palade in 1953. There are two types of ribosomes, ie. the 70s and 80s.
Ribosomes play an important function in the process of protein synthesis. The structure which is represented by the letter A is known as the cell membrane. The structure which is represented by the letter B is known as Cytosol.
Therefore, the structure which is represented by the letter C is known as free ribosomes. Thus, the correct option for this question is C.
To learn more about Ribosomes, refer to the link:
https://brainly.com/question/8773679
#SPJ2
what is 60mph (miles per hour) in meters per second? ( A mile is 5280ft)
please someone help me
Answer:
60mph=26.8224meters per second
Explanation:
A piece of irregularly shaped metal weighs 300N in air. When the metal is completely submerged in water, it weighs 232.5N. Find the volume and specific gravity of the metal.
Answer:
Volume of metal piece = 0.0069 m³ (Approx.)
Explanation:
Given:
Weight of metal in air = 300 N
Weight of metal in water = 232.5 N
Find:
Volume of metal piece
Specific gravity of metal
Computation:
We know that;
Density of water = 1,000 kg/m³
Buoyant force applied on metal piece = Weight of metal in air - Weight of metal in water
Buoyant force applied on metal piece = 300 N - 232.5 N
Buoyant force applied on metal piece = 67.5 N
Buoyant force = Volume of metal x Density of water x Gravitational force
67.5 = Volume of metal x 1,000 x 9.8
Volume of metal piece = 0.0069 m³ (Approx.)
A 1,571 kilogram car travelling at 129 kilometers per hour is driving down a highway. The driver suddenly realizes a large animal is standing stationary on the highway in the way of the car. The driver manages to release their foot off the accelerator peddle, but does not have time to hit the brake peddle. The car strikes the animal which gets stuck to the car hood. Immediately after the collision the car slows to 59 kilometers per hour. Given this information, accident investigators are able to determine the mass of the animal as what
Answer:
[tex]1863.9\ \text{kg}[/tex]
Explanation:
[tex]m_1[/tex] = Mass of car = 1571 kg
[tex]u_1[/tex] = Initial velocity of car = 129 km/h
[tex]u_2[/tex] = Initial velocity of the animal = 0
[tex]v[/tex] = Velocity of combined mass = 59 km/h
[tex]m_2[/tex] = Mass of the animal
As the momentum of the system is conserved we have
[tex]m_1u_1+m_2u_2=(m_1+m_2)v\\\Rightarrow \dfrac{m_1u_1+m_2u_2}{v}-m_1=m_2\\\Rightarrow m_2=\dfrac{1571\times 129+0}{59}-1571\\\Rightarrow m_2=1863.9\ \text{kg}[/tex]
The mass of the animal is [tex]1863.9\ \text{kg}[/tex].
45 J of work were done on the object that moved 5 meters. How much force was applied to the object?
[tex]\\ \sf\longmapsto Work\:done=Force(Displacement)[/tex]
[tex]\\ \sf\longmapsto Force=\dfrac{Work\:done}{Displacement}[/tex]
[tex]\\ \sf\longmapsto Force=\dfrac{45}{5}[/tex]
[tex]\\ \sf\longmapsto Force=9N[/tex]
Given values:
Work done,
W = 45 JDisplacement,
d = 5 mWe know that,
→ [tex]Work \ done = Force\times Displacement[/tex]
or,
→ [tex]Force = \frac{Work \ done}{Displacement}[/tex]
By putting the values, we get
[tex]= \frac{45}{5}[/tex]
[tex]= 9 \ N[/tex]
Thus the response above is right.
Learn more about force here:
https://brainly.com/question/26115859
Astronomy Question
Who thinks Venus is the hottest planet instead of the lava planet?
say aye or nay
Answer:
AYE
Explanation:
3. A ball thrown vertically upward returns to its starting point in 4s. Find its initial speed. [4]
Answer:
9.8 ×4 equal 39.2 m/s This is v intial
When carbon bonds with oxygen,
what
gas is formed?
When carbon bonds with oxygen, what gas is formed?
Answer:
Carbon dioxide
Explination:
I remember it from biology.
I hope this helps ^-^
In a chemical reaction, carbon combines with oxygen to form carbon dioxide gas.
What is a chemical reaction?A chemical reaction can be defined as a process that causes the chemical transformation of one chemical substance to another. The chemical reactions accompany chemical changes that involve the rearrangement of electrons in the forming and breaking of bonds between atoms, with no change to the nuclei.
The substances which are primarily involved in a reaction are known as reactants or reagents. Chemical reactions are commonly characterized by a chemical change, and yield products, which exhibit properties different from the reactants.
Chemical reactions take place at a characteristic rate of reaction at a given temperature, pressure, and chemical concentration. The rates increase with the increasing temperature of the reaction when more thermal energy is available to achieve the activation energy for breaking bonds between atoms.
The combustion reaction takes place when carbon combines with oxygen to produce carbon dioxide gas.
Learn more about Chemical reactions, here:
https://brainly.com/question/22817140
#SPJ2
What do the different colors of stars tell us?
A. The size of the stars
B. The shape of the stars
C. The temperatures of the stars
Answer:
It would Be C The temperatures of the stars
Explanation:
A heat pump with a COP of 3.0 is used to heat air contained in a 1205.4 m3 of well-insulated, rigid tank. Initially the pressure and the temperature inside the gas tank are 100 kPa and 7 oC, respectively. When running, the heat pump consumes 5 kW of electric power. How long does it take for the heat pump to raise the temperature of air in the tank to 22 oC
Answer:
ffff
Explanation:
ffffff
A star that is one of the coolest,
about 3,200°C, is going to be which
of the following colors?
Resourcos
A. greenish
Help
B. bluish
C. yellowish
D. reddish
Which of the following is an example of charging by friction?
Answer: where is the examples?
Explanation:
Waldo needs to know how much force to apply in order to move a 4000-kg object at 2 m/S2. Which law should he refer to
A.
first law
B.
second law
C.
third law
D.
law of gravity
Answer:
B . Second law
Explanation:
According to second law:
Net Force acting on the body produce acceleration. The magnitude acceleration of the body is directly proportional to net force and inversly proportional to the mass.
Mathematically:
a = [tex]\frac{F}{m}[/tex]
and
F = ma
So according to the given condition Waldo should use Second law.
The brightness of a star depends on what
two things?
A. age and color
B. temperature and age
C. size and age
D. size and temperature
Two long current-carrying wires run parallel to each other and are separated by a distance of 5.00 cm. If the current in one wire is 1.65 A and the current in the other wire is 3.25 A running in the opposite direction, determine the magnitude and direction of the force per unit length the wires exert on each other.
Answer:
The magnitude of the force per unit length is 2.145 x 10⁻⁵ N/m and the direction of the force is outward or repulsive since the current in the two parallel wires are flowing in opposite direction.
Explanation:
Given;
distance between the parallel wires, r = 5.0 cm = 0.05 m
current in the first wire, I₁ = 1.65 A
current in the second wire, I₂ = 3.25 A
The magnitude of the force per unit length between the two wires is calculated as follows;
[tex]\frac{F}{l} =\frac{\mu_0 I_1 I_2}{2\pi r} \\\\\frac{F}{l} =\frac{4\pi \times 10^{-7} \times 1.65 \times 3.25}{2\pi \times 0.05} \\\\\frac{F}{l} = 2.145 \times 10^{-5} \ N/m[/tex]
Therefore, the magnitude of the force per unit length is 2.145 x 10⁻⁵ N/m and the direction of the force is outward or repulsive since the current in the two parallel wires are flowing in opposite direction.
help plz fast :(((( need helpl
Answer:
True
Explanation:
I’m not 100% sure
Acceleration is rate of change of
A-Position
B-Time
C-Velocity
D-Speed
A baseball was thrown off of a 35 meter high building. It lands 50 meters from the base of the building.
Wonderful.
Look out below !
Was the FAA notified ?