Answer:
here
Explanation:
Examples of insulators include plastics, Styrofoam, paper, rubber, glass and dry air.
Examples of conductors include metals, aqueous solutions of salts
An 80 N rightward force is applied to a 10 kg object to accelerate it to the right.
The object encounters a friction force of 50 N.
net force = 30 N
mass = 8.16 kg
acceleration = 3.68 m/s²
Further explanationGiven
80 N force applied
mass of object = 10 kg
Friction force = 50 N
Required
Net force
mass
acceleration
Solution
net forceNet force = force applied(to the right) - friction force(to the left)
Net force = 80 - 50 = 30 N
massGravitational force(downward) : F = mg
m = F : g
m = 80 : 9.8
m = 8.16 kg
accelerationa = F net / m
a = 30 / 8.16
a = 3.68 m/s²
how can you rewrite the force formula (f=ma) to solve the acceleration?
The force formula can be rewritten to solve the acceleration as:
acceleration = force/mass.
What is acceleration?Acceleration is rate of change of velocity with time. Due to having both direction and magnitude, it is a vector quantity. Si unit of acceleration is meter/second² (m/s²).
What is force?The definition of force in physics is: The push or pull on a massed object changes its velocity. An external force is an agent that has the power to alter the resting or moving condition of a body. It has a direction and a magnitude.
From Newton's 2nd law of motion, we can write that:
Force = mass × acceleration
⇒ acceleration = force/mass.
Hence, the force formula can be rewritten to solve the acceleration as:
acceleration = force/mass.
Learn more about acceleration here:
brainly.com/question/12550364
#SPJ2
What is the period, in seconds, that corresponds to each of
the following frequencies: (a) 10 Hz, (b) 0.2 Hz, (c) 60 Hz?
Answer:
0.1s,5s,0.017s
Explanation:
T=1÷frequency
Answer:
a =
✔ 6
The period is
✔ 2 seconds.
b =
✔ pi
Explanation:
Graph the function using the graphing calculator. Find the least positive value of t at which the pendulum is in the center.
t =
✔0.5 sec
To the nearest thousandth, find the position of the pendulum when t = 4.25 sec.
d =
✔ 4.243 in.