Answer:
Therefore, the centripetal acceleration of the SUV is 3 times ao of the compact car.
Explanation:
FOR SUV:
[tex]ac_{suv} = \frac{mv^2}{r}\\[/tex]
where,
ac_suv = centripetal acceleration of the SUV = ?
m = mass of SUV = 6000 kg
v = speed of SUV = vo
r = radius of path
Therefore,
[tex]ac_{suv} = \frac{6000\ vo^2}{r}\\[/tex]---------------- equation (1)
FOR CAR:
[tex]ao = \frac{mv^2}{r}\\[/tex]
where,
ao = centripetal acceleration of the car = ?
m = mass of car = 2000 kg
v = speed of car = vo
r = radius of path
Therefore,
[tex]ao = \frac{2000\ vo^2}{r}\\[/tex]--------------------- equation (2)
Dividing equation (1) by eq(2):
[tex]\frac{ac_{suv}}{ao} = \frac{6000}{2000}\\\\ac_{surv} = 3ao[/tex]
Therefore, the centripetal acceleration of the SUV is 3 times ao of the compact car.
An electromagnetic wave of frequency 7.55 x 10^14 Hz propagates in carbon tetrachloride with a speed of 2.05 x 10^8 m/s. What is the wavelength of the wave in carbon tetrachloride?
A. 3.38 x 10^-7 m
B. 3.61 x 10^-7 m
C. 3.97 x 10^-7 m
D. 3.01 x 10^-7 m
E. 2.72 x 10^-7 m
Answer:
2.72*10^-7m
Explanation:
Using the formula
v = fλ
v is the speed
f is the frequency
λ is the wavelength
Substitute for λ
λ = v/f
λ = 2.05 x 10^8/7.55 x 10^14
λ = 2.05/7.55 * 10^{8-14}
λ = 0.272 * 10^-6
λ = 2.72*10^-7m
Hence the wavelength of the wave in carbon tetrachloride is 2.72*10^-7m
: Suppose somebody, using the same apparatus which you used, measured I = 45.5 ma, and V = 8.2 volts on some resistor. Using your recorded uncertainties for the 50 ma and 10-volt scales, what would be the maximum % uncertainty in R if it were calculated from the Ohm’s Law Equation (1)? Use calculus methods to answer this question if you can.
Answer:
R = (18 ± 2) 10¹ Ω
ΔR = 2 10¹ Ω
Explanation:
Ohm's law relates voltage to current and resistance
V = i R
R = [tex]\frac{V}{i}[/tex]V / i
the absolute error of the resistance is
ΔR = | [tex]| \frac{dR}{DV} | \ \Delta V + | \frac{dR}{di} | \ \Delta i[/tex]
the absolute value guarantees the worst case, maximum error
ΔR = [tex]\frac{1}{i} \Delta V+ \frac{V}{i^2} \Delta i[/tex]
The error in the voltage let be approximate, if we use a scale of 10 V, in general the scales are divided into 20 divisions, the error is the reading of 1 division, let's use a rule of direct proportion
ΔV = 1 division = 10 V / 20 divisions
ΔV = 0.5 V
The current error must also be approximate, if we have the same number of divisions
Δi = 50 mA / 20 divisions
Δi = 2.5 mA
let's calculate
ΔR = [tex]\frac{1}{45.5 \ 10^{-3}} \ 0.5 + \frac{8.2}{(45.5 \ 10^{-3})^2 } \ 2.5 \ 10^{-3}[/tex]
ΔR = 10.99 + 9.9
ΔR = 20.9 Ω
The absolute error must be given with a significant figure
ΔR = 2 10¹ Ω
the resistance value is
R = 8.2 / 45.5 10-3
R = 180 Ω
the result should be
R = (18 ± 2) 10¹ Ω
The volumes of two bodies are measured to be
V₁ = (10.2 ± 0.02) cm³ and V₂ = (6.4 ± 0.01) cm³. Calculate sum and difference in
volumes with error limits.
Answer:
sum of volumes = (16.6 ± 0.03) cm³
and difference of volumes = (3.8 ± 0.03) cm³
Explanation:
Here,
V₁ = (10.2 ± 0.02) cm³ and V₂ = (6.4 ± 0.01) cm³.
Now,
∆V = ± (∆V₁ + ∆V₂)
= ± (0.02 + 0.01) cm³
= ± 0.03 cm³
V₁ + V₂ = (10.2 + 6.4) cm³ = 16.6 cm³ and
V₁ - V₂ = (10.2 - 6.4) cm³ = 3.8 cm³
Thus, sum of volumes = (16.6 ± 0.03) cm³
and difference of volumes = (3.8 ± 0.03) cm³
-TheUnknownScientist
Answer:
I hope it's helpful .............
As you look out of your dorm window, a flower pot suddenly falls past. The pot is visible for a time t, and the vertical length of your window is Lw. Take down to be the positive direction, so that downward velocities are positive and the acceleration due to gravity is the positive quantity g. Assume that the flower pot was dropped by someone on the floor above you (rather than thrown downward). If the bottom of your window is a height hb above the ground, what is the velocity vground of the pot as it hits the ground? You may introduce the new variable vb, the speed at the bottom of the window, defined by
vb = Lwt + gt2.
Answer:
[tex]\mathbf{v_{ground} = \sqrt{{v^2+2ghb}}}[/tex]
Explanation:
From the information given:
The avg. velocity post the window is;
[tex]v_{avg} = \dfrac{L_w}{t}[/tex]
[tex]v_b[/tex] = velocity located at the top of the window
[tex]v_b[/tex] = velocity situated at the bottom of the window
Using the equation of kinematics:
[tex]v_b = v_t + gt[/tex]
Hence,
[tex]v_t = v_b - gt[/tex]
To determine the average velocity as follows:
[tex]v_{avg} = \dfrac{1}{2} (v_t + v_b)\dfrac{L_w}{t}= \dfrac{1}{2}(v_b - gt +v_b) \\ \\\dfrac{L_w}{t} = v_b - \dfrac{1}{2}gt \\ \\ v_b = \dfrac{L_w}{t }+ \dfrac{1}{2} gt\\ \\ = \dfrac{1}{t} \Bigg(L_w + \dfrac{1}{2}gt^2 \Bigg) \\ \\[/tex]
where;
[tex]v_b[/tex] = velocity gained when fallen through the height h.
Similarly, using the equation of kinematics, we have;
[tex]v_b^2 = 2gh \\ \\h = \dfrac{v_b^2}{2g}[/tex]
[tex]\implies \dfrac{(L_w + \dfrac{1}{2} gt^2_^2}{2gt^2}[/tex]
Thus, the velocity at the ground is;
[tex]v^2_{grround} = v_b^2 + 2ghb[/tex]
[tex]\mathbf{v_{ground} = \sqrt{{v^2+2ghb}}}[/tex]
The solar glare of sunlight bouncing off water or snow can be a real problem for drivers. The reflecting sunlight is horizontally polarized, meaning that the light waves oscillate at an angle of 90 degrees with respect to a vertical line. At what angle relative to this vertical line should transmission axis of polarized sunglasses be oriented, if they are to be effective against solar glare
Answer:
Explanation:
The light waves in the reflected sunlight are horizontally polarized, which illustrates that they oscillate at a [tex]90^o[/tex] angle related to a vertical line.
Depending on the condition of the height of the light, the glare can be almost entirely horizontally polarized. Furthermore, all reflections from over-water surfaces are partially polarized. The water becomes more translucent when using polarized sunglasses.
If polarized sunglasses are to be efficient against solar glare, the transmission axis should be positioned at an angle of [tex]\theta = 45^{o}[/tex]
1. The block shown below is being putled to the right on a horizontal table,
Which labeled vectors represent all the forces acting on the block?
Answer:
E
Explanation:
You desire to observe details of the Statue of Freedom, the sculpture by Thomas Crawford that is the crowning feature of the dome of the United States Capitol in Washington, D.C. For this purpose, you construct a refracting telescope, using as its objective a lens with focal length 86.3 cm. In order to acheive an angular magnification of magnitude 5.01, what focal length fe should the eyepiece have?
Answer:
the focal length of the eyepiece is 17.23 cm
Explanation:
The computation of the focal length of the eyepiece is shown below:
= Focal length of objective lens ÷ angular magnification magnitude
= 86.3 ÷ -5.01
= 17.23 cm
Hence, the focal length of the eyepiece is 17.23 cm
We simply divided the angular magnification magnitude from the focal length of objective lens so that the focal length of the eyepiece could come
Franny drew a diagram to compare images produced by concave and convex lenses.
2 overlapping circles, the left circle labeled Concave lenses and the right circle labeled Convex lenses. An X in the overlap.
Which belongs in the area marked X?
Answer:
Virtual
Explanation:
Answer:
B. Virtual
Good Luck!
PLEASE HELPPPPPP <333
Answer:
B. As gravity increases weight increases and as gravity decreases weight decreases
Explanation:
Option B is the correct answer.
From the information given, we can deduce that as the gravity increases, the weight also increases and as the gravity decreases, the weight decreases as well.
This is true from the given table. On earth, the gravity of the man was 9.8m/s² and his weight 588N. But get to space, moon precisely, the gravity reduced to 1.62m/s². Then we discover that such decrease in his gravity also led to the sharp decrease in the weight. The weight decreased from 588N on earth to 96N on the moon.
This actually reveals that weight and gravity are related in a way. Weight of an object is known to be the force of gravity on the object. The weight actually vary as a result of varying gravity.
Answer: b
since the pull of gravity on the moon is less we weigh less.
A 10Ω and a 15Ω resistor are connected in series across a 110V potential difference. (Can you find them) please help
A) what is the total resistance of the circuit?
B) what is the current through each resistor?
C) what is the voltage drop across each resistor
Answer:
(A) The total resistance of the circuit is 25 Ω
(B) The current through each resistor is 4.4 A
(C) For 10Ω: Potential drop = 44 V
For 15Ω: Potential drop = 66 V
Explanation:
Given;
potential difference, V = 110V
resistors in series, = 10Ω and a 15Ω
(A) The total resistance of the circuit is calculated as follows;
Rt = 10Ω + 15Ω = 25Ω
(B) The current through each resistor;
Same current will flow through the two resistors since they are in series.
I = V/Rt
I = 110 / 25
I = 4.4 A
(C) The voltage drop across each resistor;
For 10Ω: Potential drop = IR₁ = 4.4 x 10 = 44 V
For 15Ω: Potential drop = IR₂ = 4.4 x 15 = 66 V
which process of the method a neutral object obtains an. electrical charge
PLEASE HELP, PLEASE A CORRECT ANSWER!
Answer: I like your profile picture
Explanation:
form
bonds with each other.
There are many kinds of mixtures. Some mixtures are
chunky like a mixture of peanuts and raisins. These
mixtures are called
I
mixtures.
Answer:
Homogeneous mixtures
Explanation:
I think so because homogeneous means mixed mixtures
During a soccer game, a player grabs and holds an opponent's shirt outside of the penalty box. After the foul is called, what kick is awarded to put the ball back into play?
a
Penalty Kick
b
Indirect Free Kick
c
Kickoff
d
Direct Free Kick
PLEASE HELP
A problem says a plane is accelerating
3.42 m/s2 northeast. Which one of these
tables includes that information correctly?
Answer:
The answer is C, I just guessed and got it right lol
Explanation:
why do dzongs have broader base?
Answer:
The base of taller buildings are made broader because it reduces the pressure exerted on the ground so that they do not sink in due to the extremely high pressure of the building.
Explanation:
hope thiss helpss~!
A broad base is used to engage or recruit a diverse range of individuals to broad-based environmentalism.
Broader base:The broader base is a base of taller structures was built wider to reduce the pressure placed on the floor.It preventing the ground from sinking due to the house's extremely high tension.This structures have a wider base because the pressure is inversely proportional to area.That's why the increasing the area reduces the pressure or we can that the structure would not fall apart.Find out more about the broader base here:
brainly.com/question/14313691
An Atwood's machine consists of blocks of masses
m1 = 11.0 kg
and
m2 = 19.0 kg
attached by a cord running over a pulley as in the figure below. The pulley is a solid cylinder with mass
M = 7.90 kg
and radius
r = 0.200 m.
The block of mass m2 is allowed to drop, and the cord turns the pulley without slipping.
Answer:
Explanation:
Given that:
[tex]mass \ m_ 1 = 11.0 \ kg[/tex]
[tex]mass \ m_2 = 19.0 \ kg[/tex]
[tex]mass \ of \ the \ pulley\ M = 7.90 \ kg[/tex]
[tex]Radius \ of \ the \ pulley = 0.200\ m[/tex]
1) Provided that the mass in [tex]m_2[/tex] is greater than the mass we have in [tex]m_1[/tex], then likewise the tension we have in [tex]T_2[/tex] will be greater than the tension in [tex]T_1[/tex]
Using Newton's second law to mass [tex]m_1[/tex], we have:
[tex]m_2g - T_2 = m_2 a \\ \\ T_1 = m_1 g +m_1 a \\ \\ T_1= m_1 (g+a) --- (1)[/tex]
By using the second law, we have:
[tex]m_2g - T_2 = m_2a \\ \\ T_2 = m_2 (g-a)---(2)[/tex]
For the pulley, let's use the torque equation, so we have:
[tex]T_2 r -T_1 r = I \alpha \\ \\ T_2r -T_1r = \Big ( \dfrac{Mr^2}{2}\Big) \dfrac{a}{r} \\ \\ T_2 -T_1 = \dfrac{Ma}{2} ---- (3)[/tex]
Altogether, from equation (1)(2) and (3), we have:
[tex]m_2(g-a) -m_1 (g+a) = \dfrac{Ma}{2} \\ \\ m_2g -m_2a -m_1g-m_1a = \dfrac{Ma}{2} \\ \\ a = \dfrac{(m_2 -m_1) g}{(m_1 + m_2 + \dfrac{M}{2})} \\ \\ a = \dfrac{(19.0 \ kg - 11.0 \ kg ) ( 9.8 \ m/s^2)}{(19.0 \ kg + 11.0 \ kg + \dfrac{7.90 \ kg }{2} )}[/tex]
[tex]a = 2.31 \ m/s^2[/tex]
Also; from equation (1), the tension in the string is:
[tex]T_1[/tex] = (11.0 kg ) ( 9.8 + 2.31) m/s²
[tex]T_1[/tex] = 133.21 N
[tex]T_1[/tex] ≅ 133 N
From equation (2):
[tex]T_1[/tex] = m_2(g-a)
[tex]T_1[/tex] = (19.0 kg) ( 9.8 - 2.31) m/s²
[tex]T_1[/tex] = 142.31 N
[tex]T_1[/tex] = 142 N
A –5 μC charge is placed 2 mm from a +3 μC charge. Find the force between the two charges?
Answer:
-33750 N
Explanation:
Use coulomb's law: [tex]\frac{k(q1)(q2)}{r^{2} } = \frac{(9x10^{9})(-5x10^{-6})(3x10^{-6})}{0.002^{2} } = -33750 N[/tex]
Just as optical astronomers observe the visible light emitted by objects such as stars and galaxies, radio astronomers can also observe the radio waves emitted by these objects, as well as the radio waves emitted by gas and dust. However, radio telescopes are different from optical telescopes in important ways. In general, compared to optical telescopes, radio telescopes are larger. more curved. more expensive. smaller. This is because
Answer:
Radio telescopes are LARGER than optical telescopes and this is because radio wavelengths are much longer than optical wavelengths
Explanation:
In general radio telescopes are LARGER than optical telescopes and this is because radio wavelengths are much longer than optical wavelengths.
The main difference between radio telescopes and other telescopes especially optical telescopes is based on size and wavelength of both telescopes
Although the use of absorbances at 450 nm provided you with maximum sensitivity, the absorbances at, say, 400 nm or 500 nm are not zero and could have been used throughout this experiment. Would the same value of K be obtained at one of these wavelengths
Answer:
Yes, the value will be the same.
Explanation:
Yes, or at least to some degree, that value of K will remain the same. You're looking for a difference in absorbance, and the difference should be visible at all wavelengths, not only at the limit. That being said, resolution varies, and if we don't read the value to the maximum, we can get a less accurate reading.
Two balloons become equally charged once they are rubbed against each other. If the force between the balloons is 6.2 * 10^23 N, what would happen to the force if the charge were to triple on one of the balloons?
A) the force would triple
B) the force would become one-nineth
molecules , like hormones , are made up of which of the following
A. cells
B. Atoms
C. Tissues
D. Organs
Answer:
atoms
Explanation:
Hormones are derived from amino acids or lipids. Amine hormones originate from the amino acids tryptophan or tyrosine. Larger amino acid hormones include peptides and protein hormones. Steroid hormones are derived from cholesterol.
What are the benefits when you engage in physical fitness?
Answer:
manage your weight better, have stronger bones, have lower blood pressure, less risk of a heart attack, etc.
Answer:
You become healthier, your body starts regulating better, you get stronger bones and muscles, and you lower the risk of diabetes,heart problems and other diseases.
LESSION 7:LIGHT UNIT TEST
PHYSICAL SCIENCE B: UNIT 4: LIGHT
17/17 answers u cheaters here you go
Answer:
I cheated on
Spanish
ELA
history
Explanation:
Answer:
thx
Explanation:
Determine the potential difference between the ends of the wire of resistance 5 Ω if 720 C passes through it per minute.
Answer:
The potential difference between the ends of a wire is 60 volts.
Explanation:
It is given that,
Resistance, R = 5 ohms
Charge, q = 720 C
Time, t = 1 min = 60 s
We know that the charge flowing per unit charge is called current in the circuit. It is given by :
I = 12 A
Let V is the potential difference between the ends of a wire. It can be calculated using Ohm's law as :
V = IR
V = 60 Volts
So, the potential difference between the ends of a wire is 60 volts. Hence, this is the required solution.
When the electrons reach the collector, they flow towards the positivly charged grid. The resulting current is measured. Note that as the electrons accelerate from the cathode toward the grid, they collide with the mercury atoms. Assume that these collisions are completely elastic. How does the collected current vary if the ΔVgridΔVgrid is slowly increased? View Available Hint(s)
Answer:
We can conclude by saying that in the beginning current will increase but after sometime, it becomes saturated.
Explanation:
Note: No information on change in number of electron generated.
Since there is a collision, the electrons emitted will not reach the collector at same time. As the voltage is increased, the the speed with which the electrons will reach the collector starts to increase. Due to this, electric current will first increases till all the emitted electrons reach the collector. Since we are not provided with the information that number of electrons generated are changing, after increasing voltage current will increase for some time and then reaches a saturated state.
We can conclude by saying that in the beginning current will increase but after sometime it becomes saturated.
Electron spin: Radio astronomers can detect clouds of hydrogen too cool to radiate optical wavelengths of light by means of the 21 cm spectral line corresponding with the flipping of the electron in a hydrogen atom from having its spin parallel to the proton spin to having it antiparallel. From this wavelength, and thus E between states, find the magnetic field experienced by the electron in a hydrogen atom
Answer:
the magnetic field experienced by the electron is 0.0511 T
Explanation:
Given the data in the question;
Wavelength λ = 21 cm = 0.21 m
we know that Bohr magneton μ[tex]_B[/tex] is 9.27 × 10⁻²⁴ J/T
Plank's constant h is 6.626 × 10⁻³⁴ J.s
speed of light c = 3 × 10⁸ m/s
protein spin causes magnetic field in hydrogen atom.
so
Initial potential energy = -μ[tex]_B[/tex]B × cos0°
= -μ[tex]_B[/tex]B × 1
= -μ[tex]_B[/tex]B
Final potential energy = -μ[tex]_B[/tex]B × cos180°
= -μ[tex]_B[/tex]B × -1
= μ[tex]_B[/tex]B
so change in energy will be;
ΔE = μ[tex]_B[/tex]B - ( -μ[tex]_B[/tex]B )
ΔE = 2μ[tex]_B[/tex]B
now, difference in energy levels will be;
ΔE = hc/λ
2μ[tex]_B[/tex]B = hc/λ
2μ[tex]_B[/tex]Bλ = hc
B = hc / 2μ[tex]_B[/tex]λ
so we substitute
B = [(6.626 × 10⁻³⁴) × (3 × 10⁸)] / [2(9.27 × 10⁻²⁴) × 0.21 ]
B = [ 1.9878 × 10⁻²⁵ ] / [ 3.8934 × 10⁻²⁴ ]
B = 510556326.09
B = 0.0511 T
Therefore, the magnetic field experienced by the electron is 0.0511 T
PLEASE HELPPPPPP <333
Answer:
Explanation:
The answer is c. I am very sure
Answer:
i think its b
Explanation:
im not very sure
A pendulum is constructed from a heavy metal rod and a metal disk, both of uniform mass density. The center of the disk is bolted to one end of the rod, and the pendulum hangs from the other end of the rod. The rod has a mass of =1.0 kg and a length of =49.8 cm. The disk has a mass of =4.0 kg and a radius of =24.9 cm. The acceleration due to gravity is =9.8 m/s2.
The pendulum is held with the rod horizontal and then released. What is the magnitude of its angular acceleration at the moment of release?
The magnitude of the angular acceleration of the pendulum at the moment of release is; α = 18.45 rad/s²
We are given;
Mass of rod; m = 1 kg
Length of rod; L = 49.8 cm = 0.498 m
Mass of Disk; M = 4 kg
Radius of disk; r = 24.9 cm = 0.249 m
Let us first calculate the torque acting from the formula;
τ = mg(L/2) + MgL
Thus;
τ = (1 × 9.8 × (0.498/2)) + (4 × 9.8 × 0.498)
τ = 21.96 N.m
Using parallel axis theorem, we can find the moment of inertia about the given axis as;
I = (mL²/3) + ½MR² + ML²
Plugging in the relevant values gives;
I = (1 * 0.498²/3) + ½(4 * 0.249²) + (4 * 0.498²)
I = 1.19 kg.m²
The angular acceleration is given by the formula;
α = I/τ
α = 21.96/1.19
α = 18.45 rad/s²
Read more at; https://brainly.com/question/23321366
After your school's team wins the regional championship, students go to the dorm roof and start setting off fireworks rockets. The rockets explode high in the air and the sound travels out uniformly in all directions. If the sound intensity is 1.67 10-6 W/m2 at a distance of 233 m from the explosion, at what distance from the explosion is the sound intensity half this value
Answer:
the distance is 315.3696 m
Explanation:
The computation of the distance is given below:
Given that
Sound intensity = 1.67 × 10^-6 W/m^2
And, the distance = 233 m
Now as we know that
Power = Intensity × surface area
1.67 × 10^-6 × 4π(233)^2 = 1.67 × 10^-6 ÷ 2× 4π × d^2
d^2 = 2 × (223)^2
= √2 × 223
= 315.3696 m
Hence, the distance is 315.3696 m