Answer:
0.647 meters
Explanation:
i did the quiz
1. The block shown below is being putled to the right on a horizontal table,
Which labeled vectors represent all the forces acting on the block?
Answer:
E
Explanation:
PLEASE HELP
A problem says a plane is accelerating
3.42 m/s2 northeast. Which one of these
tables includes that information correctly?
Answer:
The answer is C, I just guessed and got it right lol
Explanation:
As you look out of your dorm window, a flower pot suddenly falls past. The pot is visible for a time t, and the vertical length of your window is Lw. Take down to be the positive direction, so that downward velocities are positive and the acceleration due to gravity is the positive quantity g. Assume that the flower pot was dropped by someone on the floor above you (rather than thrown downward). If the bottom of your window is a height hb above the ground, what is the velocity vground of the pot as it hits the ground? You may introduce the new variable vb, the speed at the bottom of the window, defined by
vb = Lwt + gt2.
Answer:
[tex]\mathbf{v_{ground} = \sqrt{{v^2+2ghb}}}[/tex]
Explanation:
From the information given:
The avg. velocity post the window is;
[tex]v_{avg} = \dfrac{L_w}{t}[/tex]
[tex]v_b[/tex] = velocity located at the top of the window
[tex]v_b[/tex] = velocity situated at the bottom of the window
Using the equation of kinematics:
[tex]v_b = v_t + gt[/tex]
Hence,
[tex]v_t = v_b - gt[/tex]
To determine the average velocity as follows:
[tex]v_{avg} = \dfrac{1}{2} (v_t + v_b)\dfrac{L_w}{t}= \dfrac{1}{2}(v_b - gt +v_b) \\ \\\dfrac{L_w}{t} = v_b - \dfrac{1}{2}gt \\ \\ v_b = \dfrac{L_w}{t }+ \dfrac{1}{2} gt\\ \\ = \dfrac{1}{t} \Bigg(L_w + \dfrac{1}{2}gt^2 \Bigg) \\ \\[/tex]
where;
[tex]v_b[/tex] = velocity gained when fallen through the height h.
Similarly, using the equation of kinematics, we have;
[tex]v_b^2 = 2gh \\ \\h = \dfrac{v_b^2}{2g}[/tex]
[tex]\implies \dfrac{(L_w + \dfrac{1}{2} gt^2_^2}{2gt^2}[/tex]
Thus, the velocity at the ground is;
[tex]v^2_{grround} = v_b^2 + 2ghb[/tex]
[tex]\mathbf{v_{ground} = \sqrt{{v^2+2ghb}}}[/tex]
molecules , like hormones , are made up of which of the following
A. cells
B. Atoms
C. Tissues
D. Organs
Answer:
atoms
Explanation:
Hormones are derived from amino acids or lipids. Amine hormones originate from the amino acids tryptophan or tyrosine. Larger amino acid hormones include peptides and protein hormones. Steroid hormones are derived from cholesterol.
If the length of the standing wave below is 2 meters, what is the wavelength of the standing
wave? *
Answer:
fffffgggggggggggggghhh
Although the use of absorbances at 450 nm provided you with maximum sensitivity, the absorbances at, say, 400 nm or 500 nm are not zero and could have been used throughout this experiment. Would the same value of K be obtained at one of these wavelengths
Answer:
Yes, the value will be the same.
Explanation:
Yes, or at least to some degree, that value of K will remain the same. You're looking for a difference in absorbance, and the difference should be visible at all wavelengths, not only at the limit. That being said, resolution varies, and if we don't read the value to the maximum, we can get a less accurate reading.
what is liang most likely trying to do
Answer:
Who is liang
Explanation:
i need more info if i'm going to help you out
He is most likely trying to figure out how to upload the picture to Brainly.
He knows that his question cannot be answered as long as nobody can see the picture.
Two balloons become equally charged once they are rubbed against each other. If the force between the balloons is 6.2 * 10^23 N, what would happen to the force if the charge were to triple on one of the balloons?
A) the force would triple
B) the force would become one-nineth
When the electrons reach the collector, they flow towards the positivly charged grid. The resulting current is measured. Note that as the electrons accelerate from the cathode toward the grid, they collide with the mercury atoms. Assume that these collisions are completely elastic. How does the collected current vary if the ΔVgridΔVgrid is slowly increased? View Available Hint(s)
Answer:
We can conclude by saying that in the beginning current will increase but after sometime, it becomes saturated.
Explanation:
Note: No information on change in number of electron generated.
Since there is a collision, the electrons emitted will not reach the collector at same time. As the voltage is increased, the the speed with which the electrons will reach the collector starts to increase. Due to this, electric current will first increases till all the emitted electrons reach the collector. Since we are not provided with the information that number of electrons generated are changing, after increasing voltage current will increase for some time and then reaches a saturated state.
We can conclude by saying that in the beginning current will increase but after sometime it becomes saturated.
A 1.0μF capacitor with an initial stored energy of 0.50 J is discharged through a 1.0MΩ resistor. (a) What is the initial charge on the capacitor? (b) What is the current through the resistor when the discharge starts? Find an expression that gives, as a function of time t, (c) the potential difference V C across the capacitor, (d) the potential difference V R across the resistor, and (e) the rate at which thermal energy is produced in the resistor.
Answer:
A) q_o = 0.001 C
B) I = 0.001•e^(-t)
C) V_c = 1000e^(-t)
D) V_r = 1000e^(-t)
E) P = e^(-2t) watts
Explanation:
A) We are given;
Initial stored energy; U_o = 0.5 J
Capacitance; C = 1.0μF = 1 × 10^(-6) F
To find the charge, we will use the formula for energy in capacitors which is given by;
U = q²/2C
Thus, since we are dealing with initial energy, U is U_o and q is q_o
Making q the subject, we have;
q_o = √2CU_o
q_o = √(2 × 1 × 10^(-6) × 0.5)
q_o = 0.001 C
B) The charge as a function of time is expressed as;
q = q_o•e^(-t/RC)
Now the current is gotten by differentiating the charge function. Thus;
I = (q_o/RC)•e^(-t/RC)
Where;
R is Resistance = 1.0MΩ = 1 × 10^(6) Ω
C is capacitance = 1 × 10^(-6) F
(q_o/RC) is the initial current = 0.001/(1 × 10^(6) × 1 × 10^(-6))
(q_o/RC) = 0.001 A
Thus;
I = 0.001•e^(-t/(1 × 10^(6) × 1 × 10^(-6)))
I = 0.001•e^(-t)
C) Formula for potential difference across the capacitor is;
V_c = IR
I = 0.001•e^(-t)
R = 1 × 10^(6) Ω
Thus;
V_c = 1 × 10^(6) × 0.001•e^(-t)
V_c = 1000e^(-t)
D) Potential difference across the resistor will be the same as that across the capacitor because the resistor is connected in parallel to the capacitor.
Thus;
V_r = V_c = 1000e^(-t)
E) rate at which thermal energy is produced is basically the power.
Thus;
P = (V_r)²/R
P = (1000²e^(-2t))/1 × 10^(6)
P = e^(-2t) watts
A pendulum is constructed from a heavy metal rod and a metal disk, both of uniform mass density. The center of the disk is bolted to one end of the rod, and the pendulum hangs from the other end of the rod. The rod has a mass of =1.0 kg and a length of =49.8 cm. The disk has a mass of =4.0 kg and a radius of =24.9 cm. The acceleration due to gravity is =9.8 m/s2.
The pendulum is held with the rod horizontal and then released. What is the magnitude of its angular acceleration at the moment of release?
The magnitude of the angular acceleration of the pendulum at the moment of release is; α = 18.45 rad/s²
We are given;
Mass of rod; m = 1 kg
Length of rod; L = 49.8 cm = 0.498 m
Mass of Disk; M = 4 kg
Radius of disk; r = 24.9 cm = 0.249 m
Let us first calculate the torque acting from the formula;
τ = mg(L/2) + MgL
Thus;
τ = (1 × 9.8 × (0.498/2)) + (4 × 9.8 × 0.498)
τ = 21.96 N.m
Using parallel axis theorem, we can find the moment of inertia about the given axis as;
I = (mL²/3) + ½MR² + ML²
Plugging in the relevant values gives;
I = (1 * 0.498²/3) + ½(4 * 0.249²) + (4 * 0.498²)
I = 1.19 kg.m²
The angular acceleration is given by the formula;
α = I/τ
α = 21.96/1.19
α = 18.45 rad/s²
Read more at; https://brainly.com/question/23321366
A forward horizontal force of 12 N is used to pull a 240-N crate at constant velocity across a
horizontal floor. The coefficient of friction is:
Explanation:
[tex]let \: coefficient \: of \: friction \: be \: \gamma \\ from \: third \: law \: of \: solid \: friction \\friction \: force = \gamma \times normal \: reaction \\ F = \gamma R \\ but \: R = mg = 240N \\ \gamma = \frac{ F}{R} \\ \gamma = \frac{12}{240} \\ \gamma = \frac{1}{20} [/tex]
if the dissipated power between a and b equal 210 watt then VB equal
Answer:
correct answer is A
Explanation:
The diagram shows a series circuit with three resistors and two power sources.
In a series circuit the current through the entire circuit is constant and the resistance is the sum of the resistances in the circuit.
When the power sources are placed in opposite position the voltage between them is subtracted.
V_b - 30 = I (10 + 4 + 6)
V_b = I (20) - 30
V_b = 30 - 2 20
V_b = 10 V
the correct answer is A
After your school's team wins the regional championship, students go to the dorm roof and start setting off fireworks rockets. The rockets explode high in the air and the sound travels out uniformly in all directions. If the sound intensity is 1.67 10-6 W/m2 at a distance of 233 m from the explosion, at what distance from the explosion is the sound intensity half this value
Answer:
the distance is 315.3696 m
Explanation:
The computation of the distance is given below:
Given that
Sound intensity = 1.67 × 10^-6 W/m^2
And, the distance = 233 m
Now as we know that
Power = Intensity × surface area
1.67 × 10^-6 × 4π(233)^2 = 1.67 × 10^-6 ÷ 2× 4π × d^2
d^2 = 2 × (223)^2
= √2 × 223
= 315.3696 m
Hence, the distance is 315.3696 m
Electron spin: Radio astronomers can detect clouds of hydrogen too cool to radiate optical wavelengths of light by means of the 21 cm spectral line corresponding with the flipping of the electron in a hydrogen atom from having its spin parallel to the proton spin to having it antiparallel. From this wavelength, and thus E between states, find the magnetic field experienced by the electron in a hydrogen atom
Answer:
the magnetic field experienced by the electron is 0.0511 T
Explanation:
Given the data in the question;
Wavelength λ = 21 cm = 0.21 m
we know that Bohr magneton μ[tex]_B[/tex] is 9.27 × 10⁻²⁴ J/T
Plank's constant h is 6.626 × 10⁻³⁴ J.s
speed of light c = 3 × 10⁸ m/s
protein spin causes magnetic field in hydrogen atom.
so
Initial potential energy = -μ[tex]_B[/tex]B × cos0°
= -μ[tex]_B[/tex]B × 1
= -μ[tex]_B[/tex]B
Final potential energy = -μ[tex]_B[/tex]B × cos180°
= -μ[tex]_B[/tex]B × -1
= μ[tex]_B[/tex]B
so change in energy will be;
ΔE = μ[tex]_B[/tex]B - ( -μ[tex]_B[/tex]B )
ΔE = 2μ[tex]_B[/tex]B
now, difference in energy levels will be;
ΔE = hc/λ
2μ[tex]_B[/tex]B = hc/λ
2μ[tex]_B[/tex]Bλ = hc
B = hc / 2μ[tex]_B[/tex]λ
so we substitute
B = [(6.626 × 10⁻³⁴) × (3 × 10⁸)] / [2(9.27 × 10⁻²⁴) × 0.21 ]
B = [ 1.9878 × 10⁻²⁵ ] / [ 3.8934 × 10⁻²⁴ ]
B = 510556326.09
B = 0.0511 T
Therefore, the magnetic field experienced by the electron is 0.0511 T
What are the benefits when you engage in physical fitness?
Answer:
manage your weight better, have stronger bones, have lower blood pressure, less risk of a heart attack, etc.
Answer:
You become healthier, your body starts regulating better, you get stronger bones and muscles, and you lower the risk of diabetes,heart problems and other diseases.
which letter represents the way the wave is moving?
Wouldn't it be B because it's a majority pointing to it?
Sorry if i'm wrong.
Consider two identical objects of mass m = 0.250 kg and charge q = 4.00 μC. The first charge is held in place at the origin of a coordinate system, unable to move at all times. The second object is initially placed 3.00 cm along the positive x-axis and is free to move. The moment the second object is released at x = 3.00 cm, what is the acceleration of this second object? This experiment is done far away from other massive objects, in outer space.
Answer:
a = 640 m/s²
Explanation:
From work-kinetic energy principles,
The net force acting on the second object is the gravitational force and the electric force due to the first object.
So, the gravitational force on the mass is F₁ = Gm₁m₂/r² since m₁ = m₂ = m, U = -Gm²/r²
Also, the electric force on the charge is F₂ = kq₁q₂/r² since q₁ = q₂ = q, U = kq²/r²
The net Force F = ma
So, -F₁ + F₂ = F (F₁ is negative since it is an attractive force in the negative x -direction and F₂ is positive since it is a repulsive force in the positive x- direction)
-Gm²/r² + kq²/r² = ma
ma = -Gm²/r² + kq²/r²
a = (-Gm²/r² + kq²/r²)/m
a = (-G + kq²/m²)m/r²
Since m = 0.250 kg, q = 4.00 μC = 4.00 × 10⁻⁶ C, r = 3.00 cm = 3.00 × 10⁻² m, G = 6.67 × 10⁻¹¹ Nm²/kg², k = 9 × 10⁹ Nm²/C² and a = acceleration of second mass.
Substituting the variables into the equation, we have
a = (m/r²)(-G + k(q/m)²)]
a = (0.250 kg/{3.00 × 10⁻² m}²)(-6.67 × 10⁻¹¹ Nm²/kg² + 9 × 10⁹ Nm²/C²(4.00 × 10⁻⁶ C/0.250 kg)²)
a = (0.250 kg/9.00 × 10⁻⁴ m)(-6.67 × 10⁻¹¹ Nm²/kg² + 9 × 10⁹ Nm²/C²(16 × 10⁻⁶ C/kg)²)]
a = (0.250 kg/9.00 × 10⁻⁴ m)(-6.67 × 10⁻¹¹ Nm²/kg² + 9 × 10⁹ Nm²/C²(256 × 10⁻¹² C²/kg²)]
a = (0.250 kg/9.00 × 10⁻⁴ m)(-6.67 × 10⁻¹¹ Nm²/kg² + 2304 × 10⁻³ Nm²/kg² ]
a = (0.250 kg/9.00 × 10⁻⁴ m)(2.304 Nm²/kg²)
a = 0.576 Nm²/kg /9.00 × 10⁻⁴ m²
a = 0.064 × 10⁴N/kg
a = 64 × 10 N/kg)
a = 640 m/s²
Rank the following objects by their accelerations down an incline (assume each object rolls without slipping) from least to greatest:
a. Hollow Cylinder
b. Solid Cylinder
c. Hollow Sphere
d. Solid Sphere
Answer:
acceleration are
hollow cylinder < hollow sphere < solid cylinder < solid sphere
Explanation:
To answer this question, let's analyze the problem. Let's use conservation of energy
Starting point. Highest point
Em₀ = U = m g h
Final point. To get off the ramp
Em_f = K = ½ mv² + ½ I w²
notice that we include the kinetic energy of translation and rotation
energy is conserved
Em₀ = Em_f
mgh = ½ m v² +1/2 I w²
angular and linear velocity are related
v = w r
w = v / r
we substitute
mg h = ½ v² (m + I / r²)
v² = 2 gh [tex]\frac{m}{m+ \frac{I}{r^2} }[/tex]
v² = 2gh [tex]\frac{1}{1 + \frac{I}{m r^2} }[/tex]
this is the velocity at the bottom of the plane ,, indicate that it stops from rest, so we can use the kinematics relationship to find the acceleration in the axis ax (parallel to the plane)
v² = v₀² + 2 a L
where L is the length of the plane
v² = 2 a L
a = v² / 2L
we substitute
a = [tex]g \ \frac{h}{L} \ \frac{1}{1+ \frac{I}{m r^2 } }[/tex]
let's use trigonometry
sin θ = h / L
we substitute
a = g sin θ \ \frac{h}{L} \ \frac{1}{1+ \frac{I}{m r^2 } }
the moment of inertia of each object is tabulated, let's find the acceleration of each object
a) Hollow cylinder
I = m r²
we look for the acerleracion
a₁ = g sin θ [tex]\frac{1}{1 + \frac{mr^2 }{m r^2 } }[/tex]1/1 + mr² / mr² =
a₁ = g sin θ ½
b) solid cylinder
I = ½ m r²
a₂ = g sin θ [tex]\frac{1}{1 + \frac{1}{2} \frac{mr^2}{mr^2} }[/tex] = g sin θ [tex]\frac{1}{1+ \frac{1}{2} }[/tex]
a₂ = g sin θ ⅔
c) hollow sphere
I = 2/3 m r²
a₃ = g sin θ [tex]\frac{1}{1 + \frac{2}{3} }[/tex]
a₃ = g sin θ [tex]\frac{3}{5}[/tex]
d) solid sphere
I = 2/5 m r²
a₄ = g sin θ [tex]\frac{1 }{1 + \frac{2}{5} }[/tex]
a₄ = g sin θ [tex]\frac{5}{7}[/tex]
We already have all the accelerations, to facilitate the comparison let's place the fractions with the same denominator (the greatest common denominator is 210)
a) a₁ = g sin θ ½ = g sin θ [tex]\frac{105}{210}[/tex]
b) a₂ = g sinθ ⅔ = g sin θ [tex]\frac{140}{210}[/tex]
c) a₃ = g sin θ [tex]\frac{3}{5}[/tex]= g sin θ [tex]\frac{126}{210}[/tex]
d) a₄ = g sin θ [tex]\frac{5}{7}[/tex] = g sin θ [tex]\frac{150}{210}[/tex]
the order of acceleration from lower to higher is
a₁ <a₃ <a₂ <a₄
acceleration are
hollow cylinder < hollow sphere < solid cylinder < solid sphere
The volumes of two bodies are measured to be
V₁ = (10.2 ± 0.02) cm³ and V₂ = (6.4 ± 0.01) cm³. Calculate sum and difference in
volumes with error limits.
Answer:
sum of volumes = (16.6 ± 0.03) cm³
and difference of volumes = (3.8 ± 0.03) cm³
Explanation:
Here,
V₁ = (10.2 ± 0.02) cm³ and V₂ = (6.4 ± 0.01) cm³.
Now,
∆V = ± (∆V₁ + ∆V₂)
= ± (0.02 + 0.01) cm³
= ± 0.03 cm³
V₁ + V₂ = (10.2 + 6.4) cm³ = 16.6 cm³ and
V₁ - V₂ = (10.2 - 6.4) cm³ = 3.8 cm³
Thus, sum of volumes = (16.6 ± 0.03) cm³
and difference of volumes = (3.8 ± 0.03) cm³
-TheUnknownScientist
Answer:
I hope it's helpful .............
Just as optical astronomers observe the visible light emitted by objects such as stars and galaxies, radio astronomers can also observe the radio waves emitted by these objects, as well as the radio waves emitted by gas and dust. However, radio telescopes are different from optical telescopes in important ways. In general, compared to optical telescopes, radio telescopes are larger. more curved. more expensive. smaller. This is because
Answer:
Radio telescopes are LARGER than optical telescopes and this is because radio wavelengths are much longer than optical wavelengths
Explanation:
In general radio telescopes are LARGER than optical telescopes and this is because radio wavelengths are much longer than optical wavelengths.
The main difference between radio telescopes and other telescopes especially optical telescopes is based on size and wavelength of both telescopes
A 10Ω and a 15Ω resistor are connected in series across a 110V potential difference. (Can you find them) please help
A) what is the total resistance of the circuit?
B) what is the current through each resistor?
C) what is the voltage drop across each resistor
Answer:
(A) The total resistance of the circuit is 25 Ω
(B) The current through each resistor is 4.4 A
(C) For 10Ω: Potential drop = 44 V
For 15Ω: Potential drop = 66 V
Explanation:
Given;
potential difference, V = 110V
resistors in series, = 10Ω and a 15Ω
(A) The total resistance of the circuit is calculated as follows;
Rt = 10Ω + 15Ω = 25Ω
(B) The current through each resistor;
Same current will flow through the two resistors since they are in series.
I = V/Rt
I = 110 / 25
I = 4.4 A
(C) The voltage drop across each resistor;
For 10Ω: Potential drop = IR₁ = 4.4 x 10 = 44 V
For 15Ω: Potential drop = IR₂ = 4.4 x 15 = 66 V
Franny drew a diagram to compare images produced by concave and convex lenses.
2 overlapping circles, the left circle labeled Concave lenses and the right circle labeled Convex lenses. An X in the overlap.
Which belongs in the area marked X?
Answer:
Virtual
Explanation:
Answer:
B. Virtual
Good Luck!
The unit called the____
is defined based on the amount of
work a horse can do in 1 minute.
The unit called horsepower is defined based on the amount of work a horse can do in 1 minute.
What is horsepower?James Watt used the horsepower unit for the first time in 1782. According to the account, James Watt used a pony to charge coal from the mines. According to the narrative, he needed a unit to measure the force of one of these animals.
He discovers that they can move 22.000 lbs per minute and decides to (arbitrarily) boost this metric by 50%. Having been the unit 33.000 lb/ft per minute, horsepower is an engine's output horsepower rating, whereas brake horsepower is an engine's input brake horsepower.
Brake horsepower measures an engine's power without accounting for power losses, whereas HP accounts for power losses. Horsepower of the brakes
Therefore, the horsepower unit is defined by the amount of work a horse can do in one minute.
To learn more about horsepower, refer to the link:
https://brainly.com/question/8652948
#SPJ2
A 3.00 x 10^2-W electric immersion heater is
used to heat a cup of water. The cup is made
of glass and its mass is 3.00 10^2 g. It con-
tains 250 g of water at 15° C. How much time
is needed for the heater to bring the water to
the boiling point? Assume the temperature of
the cup to be the same as the temperature of
the water at all times and no heat is lost to
the air.
Answer
t = 367.77 s = 6.13 min
Explanation:
According to the law of conservation of energy:
[tex]Heat\ Supplied\ By \ Heater = Heat\ Absorbed\ by\ Glass + Heat\ Absorbed\ by\ Water\\Pt = m_gC_g\Delta T_g + m_wC_w\Delta T_w\\[/tex]
where,
P = Electric Power of Heater = 300 W
t = time required = ?
m_g = mass of glass = 300 g = 0.3 kg
m_w = mass of water = 250 g = 0.25 kg
C_g = speicific heat of glass = 840 J/kg.°C
C_w = specific heatof water = 4184 J/kg.°C
ΔT_g = ΔT_w = Change in Temperature of Glass and water = 100°C - 15°C
ΔT_g = ΔT_w = 85°C
Therefore,
[tex](300\ W)(t) = (0.3\ kg)(840\ J/kg.^oC)(85^oC)+(0.25\ kg)(4184\ J/kg.^oC)(85^oC)\\[/tex]
t = 367.77 s = 6.13 min
supergiant stars
a.) form from red giants
b.) fuse hydrogen into carbon
c.) form planetary nebulae
d.) form supernovas
Answer:
d.) form supernovas
Explanation:
Learned this in physical school last year
The solar glare of sunlight bouncing off water or snow can be a real problem for drivers. The reflecting sunlight is horizontally polarized, meaning that the light waves oscillate at an angle of 90 degrees with respect to a vertical line. At what angle relative to this vertical line should transmission axis of polarized sunglasses be oriented, if they are to be effective against solar glare
Answer:
Explanation:
The light waves in the reflected sunlight are horizontally polarized, which illustrates that they oscillate at a [tex]90^o[/tex] angle related to a vertical line.
Depending on the condition of the height of the light, the glare can be almost entirely horizontally polarized. Furthermore, all reflections from over-water surfaces are partially polarized. The water becomes more translucent when using polarized sunglasses.
If polarized sunglasses are to be efficient against solar glare, the transmission axis should be positioned at an angle of [tex]\theta = 45^{o}[/tex]
What is the average speed of the bicyclist's ride?
A.45m/s
B.7.5m/s
C45mi/hr
D.7.5mi/hr
During a soccer game, a player grabs and holds an opponent's shirt outside of the penalty box. After the foul is called, what kick is awarded to put the ball back into play?
a
Penalty Kick
b
Indirect Free Kick
c
Kickoff
d
Direct Free Kick
What characteristic helps us determine
the temperature of a star?
A. shape
B. texture
C. color
Answer:
I would say color.
Explanation:
Because for me most of the time the warm color mean It hot. and the cool color most likily to mean cold
Answer:
Color
Explanation:
The temperature of a star is determined by the color. lol :)