The expected lifetime of electric bulbs produced by a given process was 1500 hours To test a new batch a sample of 10 was taken. This showed a mean lifetime of 1455 hours. The standard deviation of the production is known to still be 90 hours. Test the hypothesis, at 1% significance, that the mean lifetime of the electric light bulbs has not changed.

Answers

Answer 1

To test the hypothesis that the mean lifetime of the electric light bulbs has not changed, we can perform a hypothesis test using the given sample data.

To test the hypothesis that the mean lifetime of the electric light bulbs has not changed, we can perform a one-sample t-test. Here are the steps to conduct the hypothesis test:

Step 1: State the null hypothesis (H0) and alternative hypothesis (H1):

Null hypothesis (H0): The mean lifetime of the electric light bulbs is equal to 1500 hours.

Alternative hypothesis (H1): The mean lifetime of the electric light bulbs has changed (it is not equal to 1500 hours).

Step 2: Determine the significance level (α). In this case, the significance level is 1%, which corresponds to α = 0.01.

Step 3: Calculate the test statistic:

The formula for the one-sample t-test is:

t = (sample mean - population mean) / (sample standard deviation / √sample size)

Given information:

Sample mean (x') = 1455 hours

Population mean (μ) = 1500 hours

Population standard deviation (σ) = 90 hours

Sample size (n) = 10

Using the formula, we can calculate the test statistic:

t = (1455 - 1500) / (90 / √10)

Step 4: Determine the critical value(s) or p-value:

Since the alternative hypothesis is two-tailed (the mean could be greater or smaller), we will use a two-tailed test.

To find the critical value(s) for a two-tailed test at a 1% significance level and degrees of freedom (df) = n - 1, we can consult a t-distribution table or use statistical software. In this case, with df = 9, the critical value is approximately ±2.821.

Alternatively, we can calculate the p-value using the t-distribution. The p-value is the probability of observing a test statistic as extreme as the one calculated (or more extreme) if the null hypothesis is true.

Step 5: Make a decision:

If the absolute value of the calculated test statistic is greater than the critical value or if the p-value is less than the significance level (α), we reject the null hypothesis. Otherwise, we fail to reject the null hypothesis.

In this case, compare the absolute value of the test statistic with the critical value ±2.821, or compare the p-value with the significance level α = 0.01.

Step 6: Draw a conclusion:

Based on the decision made in Step 5, draw a conclusion about the null hypothesis in the context of the problem.

Performing the calculations:

t = (1455 - 1500) / (90 / √10) ≈ -1.50

Since we are using a two-tailed test, we compare the absolute value of the test statistic with the critical value ±2.821.

|t| = 1.50 < 2.821

Alternatively, if we calculate the p-value associated with the test statistic of -1.50, it would be greater than 0.01.

Since the test statistic is not greater than the critical value and the p-value is not less than the significance level (α), we fail to reject the null hypothesis.

Conclusion:

Based on the sample data and the hypothesis test conducted at a 1% significance level, there is not enough evidence to suggest that the mean lifetime of the electric light bulbs has changed from the expected 1500 hours.

To know more about hypothesis test follow the link:

https://brainly.com/question/17099835

#SPJ4


Related Questions

A bag contains eight yellow marbles, nine green marbles, three purple marbles, and five red marbles. Three marbles are randomly chosen from the bag. What is the probability that there is at most one purple marble? 0. 100 0. 301 0. 770 0. 971.

Answers

the probability that there is at most one purple marble when three marbles are randomly chosen from the bag is approximately 0.770.

To find the probability that there is at most one purple marble when three marbles are randomly chosen from the bag, we need to consider the different scenarios:

Scenario 1: No purple marbles are chosen

In this case, we can choose 3 marbles from the remaining yellow, green, and red marbles. The number of ways to choose 3 marbles from a set of 22 marbles (8 yellow + 9 green + 5 red) is given by the combination formula: C(22, 3).

Scenario 2: One purple marble is chosen

In this case, we need to choose 2 marbles from the remaining yellow, green, and red marbles, and 1 marble from the 3 purple marbles. The number of ways to choose 2 marbles from 22 marbles and 1 marble from 3 marbles is given by the combination formula: C(22, 2) * C(3, 1).

The total number of ways to choose 3 marbles from the 25 marbles in the bag (8 yellow + 9 green + 3 purple + 5 red) is given by: C(25, 3).

To find the probability, we sum the probabilities of both scenarios and divide by the total number of ways to choose 3 marbles:

Probability = (Number of ways for scenario 1 + Number of ways for scenario 2) / Total number of ways

Probability = (C(22, 3) + (C(22, 2) * C(3, 1))) / C(25, 3)

Using a calculator or computer program to calculate the combinations, we can find:

Probability ≈ 0.770

Therefore, the probability that there is at most one purple marble when three marbles are randomly chosen from the bag is approximately 0.770.

The correct answer is 0.770, corresponding to option 0.770.

learn more about Probability here:

https://brainly.com/question/31828911

#SPJ11

According to a recent poll, 28% of adults in a certain area have high levels of cholesterol. They report that such elevated levels "could be financially devastating to the regions healthcare system" and are a major concern to health insurance providers. Assume the standard deviation from the recent studies is accurate and known. According to recent studies, cholesterol levels in healthy adults from the area average about 208 mg/dL, with a standard deviation of about 35 mg/dL, and are roughly Normally distributed. If the cholesterol levels of a sample of 47 healthy adults from the region is taken, answer parts (a) through (d). a. What is the probability that the mean cholesterol level of the sample will be no more than 208​?
b. What is the probability that the mean cholesterol level of the sample will be between 203 and 213
c. what is the probability that the mean cholesterol level of the sample will be less than 198?
d. what is the probability that mean cholesterol

Answers

(a)  the probability of obtaining a mean cholesterol level no more than 208 mg/dL is 0.50 or 50%.

(b) the probability of the mean cholesterol level being between 203 and 213 mg/dL.

(c) The probability will give us the likelihood of obtaining a mean cholesterol level less than 198 mg/dL.

(d) the probability that the mean cholesterol level of the sample will be greater than 217 is 15.1%.

a. The probability that the mean cholesterol level of the sample will be no more than 208 mg/dL can be calculated using the z-score formula. First, we need to calculate the z-score for 208 mg/dL, which is (208 - 208) / (35 / √47) = 0. The z-score of 0 corresponds to the mean, and since the cholesterol levels are normally distributed, the probability of obtaining a mean cholesterol level no more than 208 mg/dL is 0.50 or 50%.

b. To calculate the probability that the mean cholesterol level of the sample will be between 203 and 213 mg/dL, we need to calculate the z-scores for both values. The z-score for 203 mg/dL is (203 - 208) / (35 / √47) ≈ -0.7143, and the z-score for 213 mg/dL is (213 - 208) / (35 / √47) ≈ 0.7143. Using a standard normal distribution table or calculator, we can find the probability associated with each z-score. Subtracting the probability associated with the lower z-score from the probability associated with the higher z-score gives us the probability of the mean cholesterol level being between 203 and 213 mg/dL.

c. To calculate the probability that the mean cholesterol level of the sample will be less than 198 mg/dL, we need to calculate the z-score for 198 mg/dL. The z-score is (198 - 208) / (35 / √47) ≈ -1.7143. Again, using a standard normal distribution table or calculator, we can find the probability associated with this z-score. The probability will give us the likelihood of obtaining a mean cholesterol level less than 198 mg/dL.

d. To find the probability that the mean cholesterol level of the sample will be greater than 217 mg/dL, we calculate the z-score for 217 mg/dL: (217 - 208) / (35 / √47) ≈ 1.03. Using the standard normal distribution table or calculator, we find the area to the right of this z-score, which corresponds to the probability. The probability is approximately 0.151 or 15.1%.

Complete Question:

According to a recent poll, 28% of adults in a certain area have high levels of cholesterol. They report that such elevated levels "could be financially devastating to the regions healthcare system" and are a major concern to health insurance providers. Assume the standard deviation from the recent studies is accurate and known. According to recent studies, cholesterol levels in healthy adults from the area average about 208 mg/dL, with a standard deviation of about 35 mg/dL, and are roughly Normally distributed. If the cholesterol levels of a sample of 47 healthy adults from the region is taken, answer parts (a) through (d). a. What is the probability that the mean cholesterol level of the sample will be no more than 208​?

b. What is the probability that the mean cholesterol level of the sample will be between 203 and 213

c. what is the probability that the mean cholesterol level of the sample will be less than 198?

(d) What is the probability that the mean cholesterol level of the sample will be greater than 217?

Learn more about Probability:

brainly.com/question/32117953

#SPJ11

Brainliest to the Correct! answer only


Write a function rule for “The output is 5 less than the input.” Let x

be the input and let y

be the output.

y= ?

Answers

Answer:

y = x - 5

Step-by-step explanation:

x is input

y is output

output, y, is 5 less than input, x

y = x - 5

Find all solutions of the equation x2-2x+8=0 and express them in the form a+bi

Answers

Answer: [tex]-1 +\sqrt{7} i[/tex]    and    [tex]-1 -\sqrt{7} i[/tex]

Step-by-step explanation:

[tex]x^2 + 2x +8 = 0[/tex]

We cant factor. so use the quadratic formula and get:

[tex]x = \frac{-2 + \sqrt{-28} }{2}[/tex]        and        [tex]x = \frac{-2 - \sqrt{-28} }{2}[/tex]

these can be simplified to:

[tex]-1 +\sqrt{7} i[/tex]          and            [tex]-1 -\sqrt{7} i[/tex]

and thats it!

Solve.
2(x + 1) = -8
Enter the answer in the box.
X=

Answers

Answer:

To solve for x in the equation 2(x + 1) = -8, we can use the following steps:

Distribute the 2 on the left side of the equation:

2x + 2 = -8

Subtract 2 from both sides to isolate the x term:

2x = -10

Divide both sides by 2 to solve for x:

x = -5

Therefore, the solution for x is -5.

Answer:

x=-5

Step-by-step explanation:

multiple 2 by x and 1

2x+2

then subtract 2 on both sides

2x=-10

divide 2x from both sides

x=-5

Use the Laplace transform to solve the initial value problem
y′′ +2y′ +2y=g(t), y(0)=0, y′(0)=1,
where g(t) = 1 for π ≤ t < 2π and g(t) = 0 otherwise. Express the solution y(t) as a
piecewise defined function, simplified.

Answers

Using Laplace transform, The solution to the initial value problem          y'' + 2y' + 2y = g(t), y(0) = 0, y'(0) = 1, expressed as a piecewise defined function, is:

For π ≤ t < 2π:

y(t) = e^(-t) sin(t)

For t ≥ 2π:

y(t) = 0

To solve the initial value problem using Laplace transforms, we'll apply the Laplace transform to both sides of the differential equation.

Taking the Laplace transform of the equation  [tex]y'' + 2y' + 2y = g(t)[/tex], we get:

[tex]s^2Y(s) - sy(0) - y'(0) + 2(sY(s) - y(0)) + 2Y(s) = G(s)[/tex]

Applying the initial conditions y(0) = 0 and y'(0) = 1, we have:

[tex]s^2Y(s) - s(0) - 1 + 2(sY(s) - 0) + 2Y(s) = G(s)\\\\s^2Y(s) + 2sY(s) + 2Y(s) - 1 = G(s)[/tex]

Simplifying further, we get:

[tex]Y(s) = G(s) / (s^2 + 2s + 2)[/tex]

Next, we'll find the inverse Laplace transform of Y(s) using partial fraction decomposition. We need to express the denominator as a product of linear factors:

[tex]s^2 + 2s + 2 = (s + 1)^2 + 1[/tex]

The roots of the denominator are -1 ± i. Therefore, we can rewrite Y(s) as:

[tex]Y(s) = G(s) / ((s + 1)^2 + 1)[/tex]

Now, we can take the inverse Laplace transform of Y(s):

[tex]y(t) = L^(-1)[Y(s)] = L^(-1)[G(s) / ((s + 1)^2 + 1)]\\[/tex]

Since g(t) is piecewise defined, we need to split the inverse Laplace transform into two parts based on the intervals of g(t):

For π ≤ t < 2π:

[tex]y(t) = L^(-1)[1 / ((s + 1)^2 + 1)][/tex]

For t ≥ 2π:

y(t) = 0

Now, we need to find the inverse Laplace transform of 1 / ((s + 1)² + 1). Using Laplace transform table properties, we have:

[tex]L^(-1)[1 / ((s + 1)^2 + 1)] = e^(-t) sin(t)[/tex]

Therefore, the solution to the initial value problem y'' + 2y' + 2y = g(t), y(0) = 0, y'(0) = 1, expressed as a piecewise defined function, is:

For π ≤ t < 2π:

y(t) = e^(-t) sin(t)

For t ≥ 2π:

y(t) = 0

To know more about Laplace transform refer here:

https://brainly.com/question/28168111#

#SPJ11

what is the difference between 17/100 x 20 and 17/20 x 100 in percentage

Answers

96% percentage is the difference between 17/100 x 20 and 17/20 x 100

The difference between (17/100) x 20 and (17/20) x 100 can be calculated by finding the absolute difference between the two values and expressing it as a percentage of the larger value.

First, let's calculate each expression:

(17/100) x 20 = 0.17 x 20 = 3.4

(17/20) x 100 = 0.85 x 100 = 85

The difference between these two values is |85 - 3.4| = 81.6.

To express this difference as a percentage of the larger value, we divide 81.6 by the larger value (85 in this case) and multiply by 100:

(81.6 / 85) x 100 = 96%

Therefore, the difference between (17/100) x 20 and (17/20) x 100 is approximately 96% of the larger value.

To learn more on Percentage click:

https://brainly.com/question/24159063

#SPJ1

a popular brand of pen is available in 5 colors and 2 writing tips. how many different choices of pens do you have with this brand?
There are______different choices of pens with this brand

Answers

There are 10 different choices of pens with this brand

To find out how many different choices of pens you have with a popular brand of pen available in 5 colors and 2 writing tips, you can use the multiplication principle of counting.

The multiplication principle of counting states that if there are m ways to do one thing, and n ways to do another, then there are m * n ways of doing both.

This principle applies even if there are more than two things to consider.

Hence, to solve this problem, you can simply multiply the number of colors by the number of writing tips as follows:

5 colors × 2 writing tips = 10

Therefore, there are 10 different choices of pens with this brand.

To know more about choices refer here:

https://brainly.com/question/31564756#

#SPJ11

let x be a real number. show that (1 + x)^2n ≥1 + 2nx for every positive integer n.

Answers

For every positive integer n and any real number x, (1 + x)^(2n) ≥ 1 + 2nx.

To prove that for every positive integer n, (1 + x)^(2n) ≥ 1 + 2nx for any real number x, we can use mathematical induction.

Base Case (n = 1):

When n = 1, we need to show that (1 + x)^(2*1) ≥ 1 + 2x.

Simplifying the left side:

(1 + x)^2 = (1 + x)(1 + x) = 1 + 2x + x^2

Comparing it with the right side:

1 + 2x + x^2 ≥ 1 + 2x

Since x^2 ≥ 0 for any real number x, the inequality holds true. So the base case is verified.

Inductive Hypothesis:

Assume that for some positive integer k, the statement holds true, i.e., (1 + x)^(2k) ≥ 1 + 2kx.

Inductive Step:

Now, we need to prove that the statement holds for k + 1, assuming it holds for k.

We start with the left side:

(1 + x)^(2(k+1)) = (1 + x)^(2k + 2) = (1 + x)^2 * (1 + x)^(2k)

Expanding and simplifying the expression:

(1 + x)^2 * (1 + x)^(2k) = (1 + 2x + x^2) * (1 + x)^(2k)

Next, we compare it with the right side:

1 + 2(k+1)x + (k+1)x^2

We can rewrite (k+1)x^2 as kx^2 + x^2.

So now we have:

(1 + 2x + x^2) * (1 + x)^(2k) ≥ 1 + 2(k+1)x + kx^2 + x^2

Expanding further:

(1 + 2x + x^2) * (1 + x)^(2k) ≥ 1 + 2(k+1)x + kx^2 + x^2

By the inductive hypothesis, we know that (1 + x)^(2k) ≥ 1 + 2kx.

Substituting this into the inequality, we have:

(1 + 2x + x^2) * (1 + 2kx) ≥ 1 + 2(k+1)x + kx^2 + x^2

Expanding and simplifying:

1 + 2(k+1)x + 2kx + 4kx^2 + x^2 + 2x^3 + x^2 ≥ 1 + 2(k+1)x + kx^2 + x^2

Now, we can cancel out terms and rearrange to get:

2x^3 + 4kx^2 ≥ kx^2

Since 2x^3 ≥ 0 and 4kx^2 ≥ 0 for any real number x, this inequality holds true.

Therefore, we have shown that if the statement holds for k, it also holds for k+1.

By mathematical induction, we have proven that for every positive integer n, (1 + x)^(2n) ≥ 1 + 2nx for any real number x.

To know more about mathematical induction refer here:

https://brainly.com/question/29503103

#SPJ11

Suppose 60% of the area under the standard normal curve lies to the right of z. The value of z is greater than zero. Select one: O True False

Answers

Suppose 60% of the area under the standard normal curve lies to the right of z. The value of z is greater than zero. This statement is True.

We know that the standard normal distribution is symmetric.

So, if we divide the area of the curve into two parts, each part will have 50% area. The standard normal distribution is shown below : Now, it is given that 60% of the area under the standard normal curve lies to the right of z. This implies that the remaining 40% area lies to the left of z. Therefore, z is negative because it lies to the left of the mean.

However, it is given that the value of z is greater than zero. This is not possible.

Hence, the given statement is false. However, if the statement was changed to say that 60% of the area lies to the left of z, then the statement would be true. This is because z is a positive value and it lies to the left of the mean.

To know more about curve lies visit:-

https://brainly.com/question/29996869

#SPJ11

If the probability of success is 0.730, what is the value of log odds? If you get a negative number, make sure you put a minus sign. Enter to the thousandths place

Answers

If the probability of success is 0.730, the value of log odds is 0.994 when rounded to the thousandths place. What is the Log Odds ratio?

The odds ratio is defined as the ratio of the probability of success to the probability of failure:[tex]$$OR = \frac{p}{1-p}$$T$$\ln(OR) = \ln \frac{p}{1-p}$$.$$\ln \frac{p}{1-p} = \ln \frac{0.73}{1-0.73}$$$$\ln \frac{p}{1-p} = \ln \frac{0.73}{0.27}$$$$\ln \frac{p}{1-p} = 0.994$$[/tex]

To more know about value visit:

https://brainly.com/question/30145972

#SPJ11

The area A of the triangle is a function of the height h. Your friend says the domain is discrete. Is he correct?

Answers

The most appropriate model to represent the data in the table is quadratic

How to determine the most appropriate model

From the question, we have the following parameters that can be used in our computation:

The graph

In the graph, we can see that

As the x values, the y values increasesThen reaches a maximumThen the y values decreases

Only a quadratic function has this feature

Hence, the most appropriate model to represent the data in the table is quadratic

Read more about quadratic function at

https://brainly.com/question/1214333

#SPJ1

If (5x2+14x+2)2−(4x2−5x+7)2 is divided by x2+x+1, then the quotient q and the remainder r are given by:

Answers

To divide the polynomial (5x^2 + 14x + 2)^2 - (4x^2 - 5x + 7)^2 by the polynomial x^2 + x + 1, we can use polynomial long division. The divisor x^2 + x + 1 is a quadratic polynomial, so we divide the polynomial into the leading terms of the dividend.

Performing the long division, we divide (5x^2 + 14x + 2)^2 - (4x^2 - 5x + 7)^2 by x^2 + x + 1. The quotient obtained will be the quotient q, and the remainder obtained will be the remainder r.

After completing the long division, we can express the quotient and remainder in terms of the divisor x^2 + x + 1. The quotient q will be a polynomial, and the remainder r will be a polynomial divided by the divisor.

To divide (5x^2 + 14x + 2)^2 - (4x^2 - 5x + 7)^2 by x^2 + x + 1, we use polynomial long division. The quotient q is the result of the division, and the remainder r is the remainder obtained after the division. Both q and r are expressed in terms of the divisor x^2 + x + 1.

To know more about polynomials, refer here :

https://brainly.com/question/11536910#

#SPJ11

please help cause its due later!!!

Answers

The missing numbers can be filled up as follows:

1. 200

2. 20%

3. 225

4. 800

5. 2%

How to fill up the table

To fill up the table, note that percentage is obtained by dividing a base by rate. The rate will also be changed to the decimal format before the computation is done. On this note:

P = B * R

1. 20 = x * 0.1

20 = 0.1x

Divide both sides by 0.1

x = 200

2. 90 = 450 * R

R = 90/450

R = 0.2 OR 20%

3. P = 900 * 0.25

P = 225

4. 280 = B * 0.35

B = 280/0.35

B = 800

5. 14 = 700 * R

R = 14/700

R = 0.02 OR 2%

So, with the given formula, we could generate the base, rate, and percentages of the numbers.

Learn more about base, rate, and percentage here:

https://brainly.com/question/24062437

#SPJ1

12) 75a²c-45a³d-30bc + 18bd 14) 90au - 36av- 150 yu + 60 yv
16) 105ab-90a-21b+18
18) 150m²nz +20mn²c-120m²nc-25mn²z

Answers

The given expressions are algebraic equations consisting of variables and coefficients. They involve various combinations of addition and subtraction of terms.

The expressions can be simplified by combining like terms, which involves adding or subtracting coefficients that have the same variables and exponents. The simplified forms of the expressions are as follows:

   -45a³d + 75a²c - 30bc + 18bd

   -150yu + 90au - 36av + 60yv

   -90a + 105ab - 21b + 18

   150m²nz - 120m²nc + 20mn²c - 25mn²z

12) The expression 75a²c - 45a³d - 30bc + 18bd can be rearranged by combining like terms: -45a³d + 75a²c - 30bc + 18bd.

   The expression 90au - 36av - 150yu + 60yv can be rearranged by combining like terms: -150yu + 90au - 36av + 60yv.

   The expression 105ab - 90a - 21b + 18 can be rearranged by combining like terms: -90a + 105ab - 21b + 18.

   The expression 150m²nz + 20mn²c - 120m²nc - 25mn²z can be rearranged by combining like terms: 150m²nz - 120m²nc + 20mn²c - 25mn²z.

In each case, the terms with the same variables and exponents are combined by either adding or subtracting their coefficients. The simplified forms of the expressions allow for easier manipulation and analysis of the given algebraic equations.

To learn more about algebraic - brainly.com/question/30211274

#SPJ11

A teacher grades an exam and then applies a curve. The function shown below gives the relationship between the uncurved grade (U) and the curved grade (C) Answer parts (a) through (c). C(U)=U+15 a. Find the inverse function of C(U)=U+ 15. What does it represent? Choose the correct inverse function shown below. OA. U(C)=15+C OB. U(C)=C+15 OC. U(C) =15-C OD. U(C)=C-15

Answers

The inverse function of C(U) = U + 15 is U(C) = C - 15, representing the uncurved grade in terms of the curved grade. The correct option is OD. U(C) = C - 15.

To find the inverse function of C(U) = U + 15, we need to switch the roles of U and C and solve for U.

Let's denote the inverse function as U(C).

C = U + 15

To find U, we subtract 15 from both sides:

C - 15 = U

Therefore, the inverse function is U(C) = C - 15.

Among the given options, the correct inverse function is OD. U(C) = C - 15.

This inverse function represents the uncurved grade (U) in terms of the curved grade (C). It allows us to determine the original uncurved grade when we know the curved grade after applying a curve of adding 15.

To know more about function,

https://brainly.com/question/32287374

#SPJ11

11) In AXYZ, x = 20.5, y = 11.8, and m< x = 55.4°. Which statement can be used to find the value of xy?

Answers

The statement that can be used to find the value of xy is D. cos m< x = xy/y. Explanation: Let us see what we are given and what we need to find.

Given: A xyz is a triangle with x = 20.5, y = 11.8, and[tex]m < x = 55.4[/tex]°We need to find: Value of xy Step-by-step explanation: In a right triangle, the cosine of an angle is equal to the ratio of the adjacent side to the hypotenuse. [tex]cos m < x = xy/y cos 55.4 = xy/20.5xy = 20.5 × cos 55.4 = 20.5 × 0.5736 ≈[/tex]11.76Therefore, the value of xy is approximately 11.76.

To know more about statement visit:

https://brainly.com/question/10705953

#SPJ11

Marissa purchased x dollars worth of stock and paid her broker a 0. 8% fee. She sold the stock when the stock price increased to $4,500 using an online broker that charged $20 per trade

Answers

Expression C (4,480 * 1.008x) cannot be used to determine Marissa's net proceeds because it does not consider the broker fee or the online broker fee, which should be deducted from the final proceeds.

Let's evaluate each expression to determine which one cannot be used to determine Marissa's net proceeds.

A. 4,500 * 1.008x - 20

This expression represents the final proceeds after deducting the broker fee of 0.8% (0.008) and the online broker fee of $20. It correctly calculates the net proceeds and can be used.

B. 4,500 - (0.08x + 20 + x)

This expression subtracts various fees (broker fee and online broker fee) and the initial investment amount from the final stock price. It correctly calculates the net proceeds and can be used.

C. 4,480 * 1.008x

This expression multiplies the stock price before deducting any fees by the investment amount. However, it does not account for the broker fee or the online broker fee, which should be subtracted from the final proceeds. Therefore, this expression cannot be used to determine Marissa's net proceeds.

D. 4,500 * (1.008x + 20)

This expression multiplies the stock price after deducting the online broker fee by the investment amount and the broker fee. It correctly calculates the net proceeds and can be used.

To know more about expression here

https://brainly.com/question/32158401

#SPJ4

Complete Question:

Marissa purchased x dollars worth of stock and paid her broker a 0.8% fee. She sold the stock when the stock price increased to $4,500 using an online broker that charged $20 per trade.

Which expression below cannot be used to determine her net proceeds?

A. 4,500 1.008x-20

B. 4,500-(0.08x+20+x)

C. 4,4801.008x

D. 4,500 (1.008x+20)

x degree + x degree + 90 degree + x/2 degree = 360 degrees

WHAT IS THE VALUE OF X

Answers

The value of x in the equation x degree + x degrees + 90 degrees + x/2 degree = 360 degrees is 108.

In order to solve for x in the equation:

X degree + x degree + 90 degree + x/2 degree = 360 degrees

We can start by simplifying the equation:

X + x + 90 + x/2 = 360

Combining like terms:

3/2x + X + 90 = 360

Next, let's isolate the terms involving x on one side of the equation:

3/2x + x = 360 - 90

Simplifying:

5/2x = 270

To solve for x, we need to multiply both sides of the equation by 2/5:

(2/5)(5/2x) = (2/5)(270)

x = 540/5

x = 108

Therefore, the value of x in the equation x degree + x degrees + 90 degrees + x/2 degree = 360 degrees is 108.

More questions on equation,

https://brainly.com/question/22688504

IA-IC
-2
Intro
1
8
$
do
y
-
2
x
Determine the intercepts.
x-intercept
y-intercept
☐☐☐☐☐☐☐☐☐
3 of 11
Done

Answers

The intercepts of the graph are x-intercept = (-1, 0) and y-intercept = (0, 2)

How to determine the intercepts of the graph

From the question, we have the following parameters that can be used in our computation:

The graph

The intercepts of the graph are the points where the graph intersect with the x and the y axes

Using the above as a guide, we have the following:

x-intercept: intersection with the x-axisy-intercept: intersection with the y-axis

From the graph, we have the following readings

x-intercept = (-1, 0)

y-intercept = (0, 2)

Read more about intercepts at

https://brainly.com/question/24363347

#SPJ1

Which one is the equation of the line passing through (-2,1) and (-2,0)? a. x=-2 b. y=-2 c. y=x+3 d. y=x+2

Answers

The equation of the line passing through (-2,1) and (-2,0) is x = -2.

:Given two points (-2,1) and (-2,0), to find the equation of the line passing through these points. Use the following steps;Find the slope of the line using the formula;y2 - y1 / x2 - x1

Simplify the equation of the slope and plug in any point.Find the equation in slope-intercept form by using the point-slope formThe formula of the slope is;Δy / Δx = (y2 - y1) / (x2 - x1)Let the points (-2,1) and (-2,0) be (x1,y1) and (x2,y2) respectively.

Summary:Therefore, option A is the correct answer which is x = -2, as the equation of the line passing through (-2,1) and (-2,0).

Learn more about equation click here:

https://brainly.com/question/2972832

#SPJ11

This shows a figure. What is the measure of angle MRX?

Answers

The measurement of the angle MRX is 130°.

Given that a figure we need to find the angle MRX,

The lines TP and ZX are perpendicular to each other, and there is a line MQ intersecting at R,

So,

Angles MRT and MRZ are complementary so,

m ∠MRZ + m ∠MRT = 90°

50° + m ∠MRT = 90°

m ∠MRT = 40°

Also,

Angles TRX and TRZ are supplementary so, and equal to right angle, so,

m ∠MRX = m ∠MRT + m ∠TRX

m ∠MRX = 90° + 40°

m ∠MRX = 130°

Hence the measurement of the angle MRX is 130°.

Learn more about supplementary and complementary angles click;

https://brainly.com/question/31132454

#SPJ1

explain why the function is differentiable at the given point. f(x, y) = 6 x ln(xy − 7), (4, 2) the partial derivatives are fx(x, y) =

Answers

Based on the existence and continuity of the partial derivative fx(x, y) at the point (4, 2), we can conclude that the function f(x, y) = 6x ln(xy - 7) is differentiable at that point.

To determine whether the function f(x, y) = 6x ln(xy - 7) is differentiable at the point (4, 2), we need to check if the partial derivatives exist and are continuous at that point.

Let's calculate the partial derivative fx(x, y) with respect to x:

fx(x, y) = d/dx [6x ln(xy - 7)]

To differentiate the function with respect to x, we treat y as a constant. The derivative of 6x is 6, and the derivative of ln(xy - 7) with respect to x can be found using the chain rule. The chain rule states that if we have a function of the form ln(g(x)), then the derivative is (1/g(x)) * g'(x). In this case, g(x) = xy - 7, so:

d/dx [ln(xy - 7)] = (1 / (xy - 7)) * (y)

Multiplying these results, we get:

fx(x, y) = 6 * (1 / (xy - 7)) * (y) = 6y / (xy - 7)

Now, let's evaluate the partial derivative fx(4, 2) at the point (4, 2):

fx(4, 2) = 6(2) / (4(2) - 7)

= 12 / (8 - 7)

= 12

The partial derivative fx(x, y) is a constant value of 12, which means it exists and is continuous at the point (4, 2).

Therefore, We can infer that the function f(x, y) = 6x ln(xy - 7) is differentiable at the point (4, 2) based on the presence and continuity of the partial derivative fx(x, y) at that location.

Learn more about partial derivative here:https://brainly.com/question/28751547

#SPJ11

Please help ! Look at the image below !!

Answers

The fraction that represents a repeating decimal when converted is given as follows:

2/11.

How to convert a fraction to a decimal number?

A fraction is represented by the division of a term x by a term y, such as in the equation presented as follows:

Fraction = x/y.

The terms that represent x and y are listed as follows:

x, which is the top term of the fraction, is called the numerator.y, which is the bottom term of the fraction, is called the denominator.

The decimal representation of each fraction is given by the division of the numerator by the denominator, hence:

1/8 = 0.125.2/11 = 0.222... -> repeating decimal.13/20 = 0.65.4/5 = 0.8.

A similar problem, also featuring fractions, is presented at brainly.com/question/1622425

#SPJ1

Proving explicit formulas for recurrence relations by induction. Prove each of the following statements using mathematical induction (b) Define the sequence {bn} as follows: • bo = 1 • bn = 2bn-1 + 1 for n21 Prove that for n 2 0, bn = 2n+1 -1.

Answers

By the principle of mathematical induction, we can conclude that for all  n ≥ 0, bn = 2n+1 - 1.

To prove that for n ≥ 0, bn = 2n+1 - 1, we will use mathematical induction.

Base case: When n = 0, we have b0 = 1, and 2(0) + 1 - 1 = 0, which satisfies the given formula.

Induction hypothesis: Assume that for some integer k ≥ 0, we have bk = 2k+1 - 1.

Induction step: We will prove that if the induction hypothesis is true for k, then it is also true for k + 1. That is, we will show that bk+1 = 2(k+1)+1 - 1.

Using the recurrence relation given in the problem statement, we have:

bk+1 = 2bk + 1

= 2(2k+1 - 1) + 1 (by the induction hypothesis)

= 2(2k+1) - 1

= 2(k+1)+1 - 1

Therefore, we have shown that if the induction hypothesis is true for k, then it is also true for k + 1. By the principle of mathematical induction, we can conclude that for all n ≥ 0, bn = 2n+1 - 1.

Know more about mathematical induction here:

https://brainly.com/question/29503103

#SPJ11

how many poker hands consist of all face cards? (there are 12 face cards per deck, 52 cards in total per deck, and a poker hand consists of 5 cards) combinations

Answers

There are 792 poker hands consisting of all face cards.

To determine the number of poker hands consisting of all face cards, we need to consider the number of ways we can select 5 face cards from the 12 available face cards.

Since we are selecting a specific number of items from a larger set without considering the order, we can use combinations to calculate the number of poker hands.

The number of combinations of selecting k items from a set of n items is given by the formula:

C(n, k) = n! / (k!(n-k)!)

In this case, we want to select 5 face cards from the set of 12 face cards, so we can calculate:

C(12, 5) = 12! / (5!(12-5)!)

C(12, 5) = 12! / (5! * 7!)

Calculating the factorial terms:

12! = 12 * 11 * 10 * 9 * 8 * 7!

5! = 5 * 4 * 3 * 2 * 1

7! = 7 * 6 * 5 * 4 * 3 * 2 * 1

Plugging in the values:

C(12, 5) = (12 * 11 * 10 * 9 * 8 * 7!) / (5 * 4 * 3 * 2 * 1 * 7!)

Simplifying the expression:

C(12, 5) = (12 * 11 * 10 * 9 * 8) / (5 * 4 * 3 * 2 * 1)

C(12, 5) = 792

Therefore, there are 792 poker hands consisting of all face cards.

To know more about probability visit :-

brainly.com/question/13604758

#SPJ1

What is the general solution to the differential equation (dy)/(dx)=(x-1)/(3y^2) for y>0? What is the general solution to the differential equation ( ...

Answers

The general solution to the second differential equation for y > 0 is (1/3)y^3 = x^2 + 3x + C

To find the general solution to the differential equation (dy)/(dx) = (x-1)/(3y^2) for y > 0, we can separate the variables and integrate.

For the first differential equation:

(dy)/(dx) = (x-1)/(3y^2)

We can rewrite it as:

(3y^2) dy = (x-1) dx

Now we integrate both sides:

∫(3y^2) dy = ∫(x-1) dx

Integrating, we get:

y^3 = (1/2)x^2 - x + C

Where C is the constant of integration.

This is the general solution to the differential equation for y > 0.

For the second differential equation:

(dy)/(dx) = (2x+3)/(y^2)

We can follow the same steps as before:

y^2 dy = (2x+3) dx

Integrating, we get:

(1/3)y^3 = x^2 + 3x + C

Where C is the constant of integration.

This is the general solution to the second differential equation for y > 0.

In both cases, the constant of integration represents the family of all possible solutions to the differential equation.

To know more about differential equation visit:-

brainly.com/question/30176592

#SPJ11

John deposited $4000 into an account with 4.9%intrest, compounded quarterly. Asuuming that no wuthdrawls are nade mow much will he have in the account after 8 years​

Answers

≈$5,905.67

Total Interest: $1,905.67

[tex]A=P(1+\frac{r}{n} )^{nt}[/tex] where:

[tex]A[/tex] = final amount,

[tex]P[/tex] = initial principal: 4000 ,

[tex]r[/tex] = interest rate: 4.9%,

[tex]n[/tex] = number of times interest applied per time period: quarterly; 4

and [tex]t[/tex] = time: in years; 8

thus:

[tex]A=4000(1+\frac{0.049}{4} )^{32}[/tex]

a low value of the correlation coefficient r implies that x and y are unrelated. a. true b. false

Answers

The statement "A low value of the correlation coefficient r implies that x and y are unrelated" is false.

In the context of correlation coefficient (r), the value of r measures the strength and direction of the linear relationship between two variables, x and y. It ranges from -1 to +1, where -1 indicates a perfect negative linear relationship, +1 indicates a perfect positive linear relationship, and 0 indicates no linear relationship.

A low value of the correlation coefficient (close to 0) does not necessarily imply that x and y are unrelated. It only suggests that there is a weak linear relationship between the variables. However, it is important to note that there could still be other types of relationships or associations between the variables that are not captured by the correlation coefficient.

Therefore, a low value of the correlation coefficient does not provide definitive evidence that x and y are unrelated. It is necessary to consider other factors, such as the nature of the data, the context of the variables, and potential nonlinear relationships, before concluding whether x and y are truly unrelated.

To learn more about correlation coefficient : brainly.com/question/29978658

#SPJ11

19. determine a basis for the set spanned by the vectors v1 = 1 2 3 , v2 = 3 6 9 , v3 = 1 3 5 , v4 = 5 11 17 , v5 = 2 7 12 , v6 = 2 0 0

Answers

To determine a basis for the set spanned by the given vectors, we can perform row operations on the augmented matrix [v1 | v2 | v3 | v4 | v5 | v6] and identify the pivot columns.

Row-reducing the augmented matrix yields:

[1 3 1 5 2 2 | 0]

[2 6 3 11 7 0 | 0]

[3 9 5 17 12 0 | 0]

By performing row operations, we can simplify the matrix to its row-echelon form:

[1 3 1 5 2 2 | 0]

[0 0 1 1 3 0 | 0]

[0 0 0 0 0 0 | 0]

The pivot columns are the columns with leading 1's in the row-echelon form. In this case, the pivot columns are 1, 3, and 5.

Therefore, a basis for the set spanned by the given vectors is {v1, v3, v5}, which corresponds to the columns of the original matrix in the pivot columns. These three vectors are linearly independent and can span the entire space represented by the given vectors.

Learn more about vectors here: brainly.com/question/32234723

#SPJ11

Other Questions
sudden feelings of terror that strike without warning are characteristic of Find the exact value of the trigonometric function at the given real number.(a) sin 4/3 (b) sec 7/6 (c) cot /3 Tree Cutting Problem An Investigation (T/I) I The value of the wood in a tree over time is given by V(t) 224, where Vis the current value of the wood in the tree in S and t is time in years. Ft We have, the discount factor a) Write an equation for the present value of the wood in the tree, A(t) (2 marks) b) Rewrite the present value equation using the natural logarithm (2 marks) c) We want to maximize the present value of the wood, find the first order conditions for a maximum and solve fort". (4 marks) d) If the discount rate, ris 4%, when should we cut the tree down? (2) e) Use the second order conditions to verify that you have indeed found a maximum (2) who is generally regarded as the father of american psychology Traditional data warehouses have not been able to keep up withA) the evolution of the SQL language.B) the variety and complexity of data.C) expert systems that run on them.D) OLAP. create a two-column graphic organizer similar to the one shown and fill it in with characteristics of capitalism and socialism. what characteristic do capitalism and socialism share? The Interpersonal Reactivity Index is a survey designed to assess four different types of empathy. One type of empathy, called Empathetic Concern, measures the tendency to feel sympathy and compassion for people who are less fortunate. The index ranges from o (less empathetic) to 28 (more empathetic). The following data, representing random samples of 14 males and 14 females, are consistent with results reported in psychological studies. Boxplots show that it is reasonable to assume that the populations are approximately normal. Can you conclude that there is a difference in mean empathy score between men and women? Let #, denote the mean empathy score for men. Use the a = 0.05 level and the P- value method with the T1-84 Plus calculator 13 8 20 15 Males 12 16 13 26 21 23 18 23 15 23 13 8 20 15 Females 22 20 26 25 28 24 21 23 15 26 1925 16 19 A certain type of light bulb has a normally distributed life length with a mean life length of 975 hours. The standard deviation of life length was estimated to be s=45 hours from a sample of 25 bulbs. (Type B problem)Find the 95% confidence interval for the population mean life length and interpret its meaning.If the 95% confidence interval was calculated using a population standard deviation instead, which one would be wider and why? why did phyllis schlafly oppose the equal rights amendment quizlet What are the key sub-components of the Army casualty program? which of the following best summarizes the principle of complementary t of structure and function TRUE/FALSE. a mammoth skeleton has a carbon-14 decay rate of 0.50 disintegrations per minute per gram of carbon (0.50 dis/mingcdis/mingc ). Figures underestimate the actual incidence of elder abuse because1) most acts take place in public settings like nursing homes, so they are not reported.2) many social workers do not believe elders' claims of abuse or neglect.3) normal accidents and injuries that result from physical aging are mistaken for signs of abuse.4) most abusive acts take place in private and victims are often unable or unwilling to complain. I intended to go to the evening meeting it is scheduled for the same time as the main speaker's presentation. but Which of the following sentences is corre ctuated? but, As a matter of fact, I saw my week. Assignment: 04.09 Evaluacin Oral Do warnings work for children? Fifteen 4-year old children were selected to take part in this (fictional) study.They were randomly assigned to one of three treatment conditions (Zero warnings, One warning,Two warnings.A list of bad behaviors was developed and the number of bad behaviors over the course of a week were tallied. Upon each bad behavior, children were given zero,one,or two warnings depending on the treatment group they were assigned to.After administering the appropriate number of warnings for repeated offenses, the consequence was a four minute timeout.The data shown below reflect the total number of bad behaviors over the course of the study for each of the 15 children. Zero One Two 10 12 13 9 8 17 8 20 10 5 9 6 7 10 26 What is SST? Round to the hundredths placee.g.2.75) __________ are judgments about what is intrinsically important or meaningful. Assume the following cash flows and calculate the IRR-865000 ( T0)315,000 (T1)-25,000 (T2)605,000 (T3)27,000 (T4)Calculate the risk-adjust Use the quadratic formula to solve the equation. The equation has real number solutions. By=4y +3 AUD ya (Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression. Use a comma to separate answers as needed.) the chromosphere is faint because of its low density. T/F