Suppose the available nutrients in the soil of an ecosystem decrease. Over time, which adaptation is MOST LIKELY to evolve among the plants that survive there?

Answers

Answer 1

Answer:

Root system will become larger or extend farther

Explanation:

If nutrient in soil decrease, the plant's roots system will likely become larger and extend out deeper and farther to get all the nutrients it possibly can


Related Questions

If 3.13 mol of an ideal gas has a pressure of 2.33 atm and a volume of 72.31 L, what is the temperature of the sample in degrees Celsius?

Answers

Answer:

382.49 C degree Celsius

Explanation:

Hello,

This problem deals with understanding the ideal gas law which hopes to predict how ideal gases might behave in any given condition. I listed the formula below and we are basically just going to solve for temperature by rearranging the equation as seen on the picture (there's also other rearranged ones in case you need to solve for those).

Universal gas constant R has a value of 0.0821 L * atm/(mole * K) when working with these given units so it will be part of this equation. R value changes based on what units you have.

T = PV/nR

   = (2.33) (72.31) / (3.13)(0.0821)

   = 655.64 K

Question is asking temperature in celsius so we employ the formula attached below:

C = K - 273.15

   = 655.64-273.15

    = 382.49 degree Celsius

382.49 degree Celsius is the answer!

How can heat energy transform from mechanical energy?

A)Burning
B)Friction
C)Light
D)Flames

Answers

Answer:

A

Explanation:

brainliest pls

I think it might be B because the mechanical energy can convert into heat and the heat converts to some mechanical energy. Mechanical is similar to heat. This means that’ one is able to change the internal energy of a system by either physically putting work to the system or adding heat to the system. It seems to me that motion is similar to friction because friction is caused by motion. honestly i’m not sure if this is right but i tried my best. i’m so sorry if i get this wrong

How much water, in grams, can be made from 1.84 × 1024 hydrogen molecules?

Answers

Answer:

55.0g water can be made

Explanation:

To solve this question, we must convert the molecules of H2 to moles using Avogadro's constant. With the moles, and the reaction:

H2 + 1/2O2 → H2O

We can find the moles of H2O = Moles H2 and its mass of using molar mass of water -H2O = 18.01g/mol-

Moles H2 = Moles H2O:

1.84x10²⁴ molecules * (1mol / 6.022x10²³ molecules) = 3.055 moles H2O

Mass:

3.055 moles H2O * (18.01g / mol) = 55.0g water can be made

Every cell is surrounded by a thin membrane. What is the main function of this cell membrane?
A.
to protect the cell from invasion by bacteria and viruses
B.
to allow each cell to form connections with other cells
C.
to limit the size of the cell and keep the shape of the cell the same
D.
to separate the inside of the cell from the outside environment

Answers

Answer:

The main function of the cell membrane is to protect the cell from the outer environment.

Answer: The answer is D.) to separate the inside of the cell from the outside environment

Explanation:

How are solutions and compounds similar?

Answers

Answer:

hope you liked it!!!!!!

A compound is a pure substance that is composed of elements chemically bonded in definite proportions. A compound can be broken down into simpler substances only by chemical reactions, such as electrolysis.

A solution is a homogeneous mixture, meaning that it is the same throughout. A solution is composed of one or more solutes dissolved in a solvent. The proportions of the solute(s) can vary, as the components of a solution are not chemically bonded. The components of a mixture can be separated by physical means, such as filtration and distillation

8
What happens to solid waste in the circulatory system?
A it's expelled through the lungs
B
It pumps into the coronary circulation
C
It's dropped off in the kidneys
D
It's deposited in the aorta

Answers

Answer:c it’s dropped off in the kidneys

Explanation:

I took the quiz

The solid wastes are from the circulatory system is expelled to the kidney where, the nitrogenous wastes like urea and uric acid is excreted as urine from the body.

What is circulatory system ?

A circulatory system is an organ system, where the blood is purified and oxygenation of blood takes place. Through circulatory system, the blood reaches throughout the body pumped from the heart through veins.

The organs included in circulatory system are lungs, heart, aorta, veins, blood vessels etc. There are various kinds of blood vessels each having specific functions.

There is a network of blood vessels including arteries and large veins, capillaries that join the venules and other veins. All the nutrients and ions are circulated throughout the body through blood and solid wastes are then expelled to kidney.

Kidney function as a sieve to clean the good fluid from waste products. Uric acid and urea along with water excreated as urine then. Thus, option C is correct.

To find more about circulatory system, refer the link below:

https://brainly.com/question/10103458

#SPJ6

What is the limiting reactant in the following equation? How much Fe2O3 will be produced if 2.1 g of Fe reacts with 2.1 g of O2?

4 Fe + 3O2 —> 2Fe2O3

Answers

Answer:

Fe is limiting reactant and 3.00g of Fe2O3 will be produced

Explanation:

To solve this question we must convert the mass of each reactant to moles and, using the reaction we can find limiting reactant. With moles of limiting reactant we can find moles of Fe2O3 and its mass as follows:

Moles Fe -Molar mass: 55.845g/mol-

2.1g * (1mol / 55.845g) = 0.0376 moles

Moles O2 -Molar mass: 32g/mol-

2.1g * (1mol / 32g) = 0.0656 moles

For a complete reaction of 0.0656 moles of O2 are needed:

0.0656moles O2 * (4mol Fe / 3 mol O2) = 0.0875 moles Fe

As there are just 0.0376 moles,

Fe is limiting reactant

The mass of Fe2O3 is:

Moles:

0.0376 moles Fe* (2mol Fe2O3 / 4mol Fe) = 0.0188 moles Fe2O3

Mass:

0.0188 moles Fe2O3 * (159.69g / mol) =

3.00g of Fe2O3 will be produced


A certain mass of water was heated with 41,840 Joules, raising its temperature from 22.0°C to 28.5 °C. Find the
mass of the water.

Answers

Answer:

1.5 × 10³ g

Explanation:

Step 1: Given and required data

Transferred heat (Q): 41,840 JInitial temperature: 22.0 °CFinal temperature: 28.5 °CSpecific heat capacity of water (c): 4.184 J/g.°C

Step 2: Calculate the temperature change

ΔT = 28.5°C - 22.0 °C = 6.5 °C

Step 3: Calculate the mass (m) of water

We will use the following expression.

Q = c × m × ΔT

m = Q / c × ΔT

m = 41,840 J / (4.184 J/g.°C) × 6.5 °C = 1.5 × 10³ g

A community located downwind from a coal-fired power plant has seen a recent increase in the number of dead and dying trees. A so scientist measured values for the following parameters before and after the trees died off. Which of the following oil data should be used to determine if the coalfired power plant emiations were the cause of the damage to the trees
a. Moisture content and water retention
b. Parent material composition
c. Pesticide and herbicide residue levels
d. Calcium and aluminum levels

Answers

Answer:

Option D, Calcium and Aluminum levels

Explanation:

The coal fired power plant releases huge amount of particulate and gaseous emissions such as mercury, sulphur dioxide, nitrogen oxide etc. When there is rain, these gaseous and particulate matter comes to the ground along with rain water and pollute the soil. There are also chances of acid rain due to the presence of sulphur dioxide. Polluted soil and acid rain negatively impact the growth of the plants and causes leaching of Aluminium thereby decreasing the availability of calcium for the plants. Thus, the trees die. Hence, if the amount of Aluminium and Calcium in soil is determined, one can easily deduce the cause of death of trees.

Hence, option D is correct

Which of the following is true for a gas under conditions of very high pressure? (5
points)
1) PV > nRT, because the real volume of the gas would be more than the ideal
volume.
2) PV = nRT, because intermolecular forces are considerable at very high
pressures.
3) PV = nRT, because all gases behave as ideal gases at very high pressures.
04) PV = nRT, because the volume of the gas would become negligible.

Answers

Answer:

1) PV > nRT, because the real volume of the gas would be more than the ideal

volume.

Explanation:

According to the ideal gas equation; PV = nRT.  Let us recall that this equation only holds under ideal conditions.

Gases exhibit ideal behavior under high temperature and low pressure. At higher pressure, the real volume of the gas is larger than the ideal volume of the gas.

Thus, at high pressure,  PV > nRT, because the real volume of the gas would be more than the ideal  volume.

Answer:

1) PV > nRT, because the real volume of the gas would be more than the ideal volume.

Explanation:

just took the test :)

Cell membranes are selectively permeable. This means that A. only water can move freely across the cell membrane. B. any substance can move across the cell membrane, but chemical energy will always be required. C. some substances can move freely across the cell membrane, while others must be transported. D. no substances can move freely across the cell membrane.

Answers

Answer:

C. some substances can move freely across the cell membrane, while others must be transported.

Explanation:

A 0.150-kg sample of a metal alloy is heated at 540 Celsius an then plunged into a 0.400-kg of water at 10.0 Celsius, which is contained in a 0.200-kg aluminum calorimeter cup. The final temperature of the system is 30.5 Celsius. What is the specific heat of the metal alloy in J/Kg.Celsius

Answers

Answer:

[tex]C_{alloy}=0.497\frac{J}{g\°C}[/tex]

Explanation:

Hello there!

In this case, according to this calorimetry problem on equilibrium temperature, it is possible for us to infer that the heat released by the metal allow is absorbed by the water for us to write:

[tex]Q_{allow}=-(Q_{water}+Q_{Al})[/tex]

Thus, by writing the aforementioned in terms of mass, specific heat and temperature, we have:

[tex]m_{alloy}C_{alloy}(T_{eq}-T_{alloy})=-(m_{water}C_{water}(T_{eq}-T_{water})+m_{Al}C_{Al}(T_{eq}-T_{Al})[/tex]

Then, we solve for specific heat of the metallic alloy to obtain:

[tex]C_{alloy}=\frac{-(m_{water}C_{water}(T_{eq}-T_{water})+m_{Al}C_{Al}(T_{eq}-T_{Al})}{m_{alloy}(T_{eq}-T_{alloy})}[/tex]

Thereby, we plug in the given data to obtain:

[tex]C_{alloy}=\frac{-(400g*4.184\frac{J}{g\°C} (30.5\°C-10.0\°C)+200g*0.900\frac{J}{g\°C}(30.5\°C-10.0\°C)}{150g(30.5\°C-540\°C)} \\\\C_{alloy}=0.497\frac{J}{g\°C}[/tex]

Regards!

How are tadpoles and larvae similer

Answers

Answer: Tadpole, also called polliwog, aquatic larval stage of frogs and toads. Compared with the larvae of salamanders, tadpoles have short, oval bodies, with broad tails, small mouths, and no external gills. The internal gills are concealed by a covering known as an operculum.

Explanation:

There are four stages to the classical demographic transition model Pre-transitional Europe was characterized by high and
fluctuating mortality and a high birth rate. The transition model began to progress into and through stage 2 in the late 18th and early
19th century. All BUT ONE contributed to the decline in mortality.
S- -1]))
A)
Enacting measures to provide clean water supplies.
B)
Public health advances including quarantine of settlements undergoing
epidemics
The development of vaccines to prevent disease and antibiotics to treat
infection.
D)
Widespread acceptance of germ theory resulting in more hygienic
practices, including hand washing and sterilizing medical equipment and
infants' bottles.

Answers

The answer is D! Explaination:

What compound(s) does pure water contain?

Answers

oxygen hydrogen beau clutch

1. Which individuals are most likely to die before reproducing, those with adaptive traits or
nonadaptive traits? Why? (Hint: You may use the newt population as an example in your
explanation.)

Answers

Nonadaptive traits .

Explain what matter is, and all of the states it can have.

Answers

Answer:

matter is anything that occupies space

states of matter : solid,liquid, gas,plasma

Answer:

matter can be anything, tables chairs, literally anything. it has volume and takes up space.

Explanation:

Solids, liquids, gases, plasmas, and Bose-Einstein condensates (BEC)

200.0g of a 3.0% NaF solution, how much distilled water do we weigh out?

197g of distilled water
194g of distilled water
140g of distilled water
170g of distilled water

Answers

Answer:

194g of distilled water.

Explanation:

Hello there!

In this case, according to the given information for this problem, it turns out possible for us to use the given mass of the solution and the percent by mass of NaF to firstly calculate the grams of this solute as shown below:

[tex]\%m=\frac{m_{solute}}{m_{solution}} *100\%\\\\m_{solute}=\frac{\%m*m_{solution}}{100\%} \\\\m_{solute}=\frac{3.0\%*200.0g}{100\%} \\\\m_{solute}=6g[/tex]

And finally, since the mass of solution is calculated by adding mass of solute and mass of solvent we obtain the mass of water (solvent) as follows:

[tex]m_w=200g-6g=194g[/tex]

Therefore, the answer is 194g of distilled water

Regards!

A balloon is inflated to a volume of 8.0 L on a day when the atmospheric pressure is 1.013 bar . The next day, a storm front arrives, and the atmospheric pressure drops to 0.968 bar . Assuming the temperature remains constant, what is the new volume of the balloon, in liters

Answers

Answer:

[tex]V_2=8.4L[/tex]

Explanation:

Hello there!

In this case, according to the definition of the Boyle's law, which describes de pressure-volume behavior as an inversely proportional relationship, it is possible for us to write:

[tex]P_1V_1=P_2V_2[/tex]

Thus, since we are given the initial pressure and temperature, and the final pressure, we are able to calculate the final volume as shown below:

[tex]baV_2=\frac{P_1V_1}{P_2}\\\\V_2=\frac{8.0L*1.013bar}{ 0.968bar}\\\\V_2=8.4L[/tex]

Regards!

Do u believe that you are beautiful/handsome?


Yes or No?

Answers

i think i’m beautiful some days but other days no. Mainly only depends on my mood.

Hl Weakly dissociates in water according to the chemical equation below. H20+ Hl <-> H3O^+ + l- What is a conjugate acid-base pair in this reaction?

Answers

Answer:

https://www.clutchprep.com/chemistry/practice-problems/70217/hi-aq-h2o-l-h3o-aq-i-aq-identify-each-as-either-a-bronsted-lowry-acid-bronsted-l

Explanation:

https://www.clutchprep.com/chemistry/practice-problems/70217/hi-aq-h2o-l-h3o-aq-i-aq-identify-each-as-either-a-bronsted-lowry-acid-bronsted-l

130 cm of a gas at 20°C exerts a pressure of
750 mm Hg. Calculate its pressure if its volume
is increased to 150 cm3 at 35 °C.​

Answers

Answer: The pressure is 1137.5 mm Hg its pressure if its volume is increased to 150 [tex]cm^{3}[/tex] at 35 °C

Explanation:

Given: [tex]P_{1}[/tex] = 750 mm Hg,    [tex]V_{1} = 130 cm^{3}[/tex],     [tex]T_{1} = 20^{o}C[/tex]

[tex]P_{2}[/tex] = ?,          [tex]V_{2} = 150 cm^{3}[/tex],            [tex]T_{2} = 35^{o}C[/tex]

Formula used to calculate the new pressure is as follows.

[tex]\frac{P_{1}V_{1}}{T_{1}} = \frac{P_{2}V_{2}}{T_{2}}[/tex]

Substitute the values into above formula as follows.

[tex]\frac{P_{1}V_{1}}{T_{1}} = \frac{P_{2}V_{2}}{T_{2}}\\\frac{750 mm Hg \times 130 cm^{3}}{20^{o}C} = \frac{P_{2} \times 150 cm^{3}}{35^{o}C}\\P_{2} = 1137.5 mm Hg[/tex]

Thus, we can conclude that the pressure is 1137.5 mm Hg its pressure if its volume is increased to 150 [tex]cm^{3}[/tex] at 35 °C.

PLEASE HELP!! ORGANIC CHEMISTRY

A sample of a diatonic gas is loaded into an evacuated bottle at STP. The 0.25 L bottle contains 1.76 grams of the unidentified gas. Calculate the molar mass of the gas. What is the identity of the diatomic gas?

Answers

Answer:

(a) 157.7 g

(b) 7.04 g/dm³

Explanation:

(a) From the question,

According to Avogadro's Law,

1 mole of every gas at STP occupies a volume of 22.4 dm³

But mass of 1 mole of the diatomic gas  = molar mass of the gas.

This Implies that,

The molar mass of the gas at STP occupies a volume of 22.4 dm³

From the question,

If,

0.25 L bottle contain 1.76 g of the gas,

Therefore,

Molar mass of the gas = (1.76×22.4)/0.25

Molar mass of the gas = 157.7 g.

(b) Density of the gas = mass/volume

D = m/v

Given: m = 1.76 g, v = 0.25 L = 0.25 dm³

Therefore,

D = 1.76/0,25

D = 7.04 g/dm³

An experimental measurement was taken of 10.4mL and the actual measurement was 9.7mL. What is the percent error?

Answers

Answer:

13%

Explanation:

12. An electrolysis reaction is
A. hydrophobic.
B. spontaneous.
C. exothermic.
D. non-spontaneous.

Answers

Answer: D.) non-spontaneous.

Explanation:

What is one movement that liquid water CANNOT do while on or at the Earth's surface? (GIVE RIGHT ANSWER OR I DELETE 100 POINTS)

Answers

Answer:

One movement that i can't do is float in mid air

Explanation:

1. How does a virus differ from a common cell?
A. It has no nucleus, cell wall, or organelles.
B. It has two nuclei and no cell wall or organelles.
C. A virus has no cell well, no nucleus, and only organelles for
movement.
D. A virus differs from a cell only in shape.

Answers

The answer is letter C

Inquiry Extension Consider a reaction that occurs between solid potassium and chlorine gas. If you start with an initial mass of 15.20 g K, and an initial mass of 2.830 g Cl2, calculate which reactant is limiting. Explain how to determine how much more of the limiting reactant would be needed to completely consume the excess reactant. Verify your explanation with an example

Answers

The 3.13 g of K would be needed to completely react with the remaining [tex]Cl_2[/tex].

To determine which reactant is limiting, we need to calculate the amount of product that can be formed from each reactant and compare them. The reactant that produces less product is the limiting reactant, since the reaction cannot proceed further once it is consumed.

The balanced chemical equation for the reaction between solid potassium and chlorine gas is:

2 K(s) + [tex]Cl_2[/tex](g) -> 2 KCl(s)

From the equation, we can see that 2 moles of K react with 1 mole of [tex]Cl_2[/tex] to form 2 moles of KCl.

First, we need to convert the masses of K and [tex]Cl_2[/tex] into moles:

moles of K = 15.20 g / 39.10 g/mol = 0.388 mol

moles of [tex]Cl_2[/tex] = 2.830 g / 70.90 g/mol = 0.040 mol

Now, we can use the mole ratio from the balanced equation to calculate the theoretical yield of KCl from each reactant:

Theoretical yield of KCl from K: 0.388 mol K x (2 mol KCl / 2 mol K) = 0.388 mol KCl

Theoretical yield of KCl from [tex]Cl_2[/tex]: 0.040 mol [tex]Cl_2[/tex] x (2 mol KCl / 1 mol [tex]Cl_2[/tex]) = 0.080 mol KCl

We can see that the theoretical yield of KCl from K is 0.388 mol, while the theoretical yield of KCl from [tex]Cl_2[/tex] is 0.080 mol. Therefore, the limiting reactant is [tex]Cl_2[/tex], since it produces less product.

To determine how much more of the limiting reactant would be needed to completely consume the excess reactant, we can use the stoichiometry of the balanced equation.

We know that 1 mole of [tex]Cl_2[/tex] reacts with 2 moles of K to produce 2 moles of KCl. Therefore, the amount of additional K needed to react with the remaining [tex]Cl_2[/tex] can be calculated as follows:

moles of K needed = 0.040 mol [tex]Cl_2[/tex] x (2 mol K / 1 mol [tex]Cl_2[/tex])

                                = 0.080 mol K

This means that 0.080 moles of K would be needed to completely consume the remaining [tex]Cl_2[/tex]. We can convert this to a mass by multiplying by the molar mass of K:

mass of K needed = 0.080 mol K x 39.10 g/mol

                              = 3.13 g K

Therefore, The 3.13 g of K would be needed to completely react with the remaining.

Example verification:

Suppose we had an additional 0.50 g of [tex]Cl_2[/tex] in the reaction. Would all of the K be consumed, or would there still be excess K?

Moles of additional [tex]Cl_2[/tex] = mass of [tex]Cl_2[/tex] / molar mass of [tex]Cl_2[/tex]

Moles of additional [tex]Cl_2[/tex] = 0.50 g / 70.90 g/mol

Moles of additional [tex]Cl_2[/tex] = 0.0070 mol

The theoretical yield of KCl that can be formed from the additional [tex]Cl_2[/tex] is:

0.0070 mol [tex]Cl_2[/tex] x (2 mol KCl / 1 mol [tex]Cl_2[/tex]) x (74.55 g KCl / 1 mol KCl) = 1.04 g KCl

Therefore, the total amount of KCl that can be formed from all of the [tex]Cl_2[/tex] is:

5.95 g + 1.04 g = 6.99 g

The amount of K that would be needed to completely consume all of the [tex]Cl_2[/tex].

Learn more about Solid Potassium at

brainly.com/question/27549056

#SPJ1


At 27.0°C, the volume of a gas is 630 L. At the same pressure, its volume is 92,0 mL at a temperature of

Answers

Answer:

–272.96 °C

Explanation:

From the question given above, the following data were obtained:

Initial temperature (T₁) = 27.0 °C

Initial volume (V₁) = 630 L.

Final volume (V₂) = 92.0 mL

Final temperature (T₂) =?

Next, we shall convert 27.0 °C to Kelvin temperature. This can be obtained as follow:

T(K) = T(°C) + 273

Initial temperature (T₁) = 27.0 °C

Initial temperature (T₁) = 27.0 °C + 273

Initial temperature (T₁) = 300 K

Next, we shall convert 92.0 mL to L. This can be obtained as follow:

1000 mL = 1 L

Therefore,

92 mL = 92 mL × 1 L / 1000 mL

92 mL = 0.092 L

Next, we shall determine the final temperature.

Initial temperature (T₁) = 300 K

Initial volume (V₁) = 630 L.

Final volume (V₂) = 0.092 L

Final temperature (T₂) =?

V₁ / T₁ = V₂ / T₂

630 / 300 = 0.092 / T₂

2.1 = 0.092 / T₂

Cross multiply

2.1 × T₂ = 0.092

Divide both side by 2.1

T₂ = 0.092 / 2.1

T₂ = 0.04 K

Finally, we shall convert 0.04 K to celsius temperature. This can be obtained as follow:

T(°C) = T(K) – 273

Final temperature (T₂) = 0.04 K

Final temperature (T₂) = 0.04 – 273

Final temperature (T₂) = –272.96 °C

how many molecules in 400g of acetic acid

Answers

Answer:chemical formula of acetic acid is  or

so, molecular mass of acetic acid = 2 × atomic mass of C + 4 × atomic mass of H + 2 × atomic mass of O

= 2 × 12 + 4 × 1 + 2 × 16

= 24 + 4 + 32

= 60g/mol

given mass of acetic acid = 22g

so, no of moles of acetic acid = given mass/molecular mass

= 22/60 ≈ 0.367

so, number of moles of acetic acid is 0.367mol

number of molecules in 0.367 mol of acetic acid = 6.022 × 10²³ × 0.367

= 2.21 × 10²³

Explanation:

Other Questions
Each envelope in the class contains the same number of triangles and quadrilaterals. Write an expression thatrepresents the total number of sides in the room. Harvey Dent wants to sell the $43,000 TriForcebonds he purchased 3 years ago at par value. The bonds have a 2.80% coupon, 9 years to maturity, and are trading at a 2.45% yield to maturity. If Harvey sells the bonds today, his proceeds from the sale would result in: What changes when a cell divides into two daugther cells to make it easier for the cells to exchange materials across the surface of the cell? A. Cell division does not make it easier to transfer materials across the cell surface. B. The new cells move materials faster. C. Each new cell has an increased surface area to volume ratio The Old State House in Boston wasused for what purpose AFTER theevents of the American Revolution in1776?A. It was used as the government offices of theMassachusetts colony.B. It was used to house the British regulars that stayedin the colonies.C. It was used as a meeting hall for the citizens of thestate of Massachusetts. what's the main function for the human digested system Can someone plz help me plz I beg u plz A: 7x - 3x +10B:+4x+66-4A-B= - How much power does it take to lift a1,000 N load 10 m in 20 s? Most of the USA is considered what type of climate? Jonas received a gift card of $35.00 to use for an online App Market to buy applications for his tablet. All Apps cost $1.75. Which table represents the relationship between x, the number of Apps Jonas can buy, and y, the balance remaining on his gift card. Which gas is used by humans in the process of cellular respiration? You enter into a short crude oil futures contract at $43 per barrel. The initial margin is $3,375 and the maintenence margin is $2,500. One contract is for 1,000 barrels of oil. By how much do oil prices have to change before you receive a margin call Which sentence from the passage most clearly reveals the authors bias? Early sailors traveled to nearly every port on the nearly 2,500 mile long Mediterranean Sea. Which of the following did they NOT bring back from other lands?GoodsGoodsIdeasIdeasNew leadersNew leadersNew religionsNew religions 2. I said to Neetu, "Where have you been all these days?" (into indirectspeech) PLZ HELPWhat does each line of the Preamble mean? Match each statement on the right with its line in the Preamble.Which letter 20.________We the people of the United States a. Make everything fair with laws and courtsb. Keep the peace at homec. to make the country the best we cand. The people are in charge e. Protect against our enemiesf. Make sure that citizens are taken care of g. Officially creates a government and names our country h. Make sure our rights and rights of our future children are protected forever question number nine answer Match each STD to the appropriate category. Ravi and Hasan bought 134 of pies , Ravi ate 1/3 and Hasan ate 2/3 of it. How much pie is left? Underground water is an example ofA) a hidden water sourceB) a untapped water sourceC) an unusable water source D) a high salinity water source