Answer:
θ = 225 rad
Explanation:
given data
angle = 25 rad
to find out
angular velocity after 3t?
solution
let angular acceleration α in t
θ = ω × t + 0.5 × α × t² ........................1
here ω = 0 (initial velocity )
so put this value here
25 = 0 + 0.5 × α × t² ..........................2
α = 25 ÷ (0.5 t²)
α = 50 ÷ t² .........................3
now here we take in 3t
θ = ω × 3t + 0.5 × α × (3t)²
for ω = 0
θ = 0 + 0.5 × α × 9t²
now put value in eq 2
so
θ = (0.5) × (50 ÷ t²) × (3t)²
θ = 25 × 9
θ = 225 rad
Your favorite golfer taps the golf ball with just enough force that it rolls into the ninth hole is an example of what law of motion???
Answer:
mass and on the net force acting on it. ... Tap again to see term ... Newton's second law of motion states that an object's acceleration depends on its ... You hit a ping-pong ball & a tennis ball with a tennis rack
Sarah took 204 seconds to bicycle to their grandmother's house, a total of
430 meters. What was their velocity in m/s?
Answer:
2.1m/s towards your grandmother's house
Explanation:
Given parameters:
Time taken = 204s
Distance = 430m
Unknown:
Velocity = ?
Solution:
The velocity is determined by:
Velocity = [tex]\frac{displacement}{time}[/tex]
Velocity = [tex]\frac{430}{204}[/tex] = 2.1m/s towards your grandmother's house
Fusion probability is greatly enhanced when appropriate nuclei are brought close together, but mutual Coulomb repulsion must be overcome. This can be done using the kinetic energy of high-temperature gas ions or by accelerating the nuclei toward one another. Calculate the potential energy of two singly charged nuclei separated by 1.00 x 10-12 m by finding the voltage of one at that distance and multiplying by the charge of the other.
Answer:
the Potential Energy is 2.304 × 10⁻¹⁶ J
Explanation:
Given the data in the data in the question;
The expression for the electric potential energy between the charges can be expressed as follows;
PE = qV ------equ 1
where q is the charge and V is the electric potential
Also the formula for electric potential due to point a point in a field is;
V = kq / r -------equ 2
where k is the electrostatic constant and r is the distance form the charged particle
input equation 2 into 1
PE = q × kq / r
PE = kq²/r ------- equ 3
so we substitute into equation 3; 1.00×10⁻¹² for r, 9.00×10⁹ for k( constant ) and 1.60×10⁻¹⁹ for q( charge )
PE = ((9.00×10⁹) (1.60×10⁻¹⁹)²) / 1.00×10⁻¹²
PE = 2.304 × 10⁻²⁸ / 1.00×10⁻¹²
PE = 2.304 × 10⁻¹⁶ J
Therefore, the Potential Energy is 2.304 × 10⁻¹⁶ J
A body is dropped from the roof of a 20 m high building by how much:
Does it take to reach the ground? How fast does it hit the ground?
Answer:
t = 2.01 s
Vf = 19.7 m/s
Explanation:
It's know through the International System that the earth's gravity is 9.8 m/s², then we have;
Data:
Height (h) = 20 mGravity (g) = 9.8 m/s²Time (t) = ?Final Velocity (Vf) = ?==================================================================
Time
Use formula:
[tex]\boxed{t=\sqrt{\frac{2*h}{g}}}[/tex]Replace:
[tex]\boxed{t=\sqrt{\frac{2*20m}{9.8\frac{m}{s^{2}}}}}[/tex]Everything inside the root is solved first. So, we solve the multiplication of the numerator:
[tex]\boxed{t=\sqrt{\frac{40m}{9.8\frac{m}{s^{2}}}}}[/tex]It divides:
[tex]\boxed{t=\sqrt{4.08s}}[/tex]The square root is performed:
[tex]\boxed{t=2.01s}[/tex]==================================================================
Final Velocity
use formula:
Vf = g * tReplace:
Vf = 9.8 m/s² * 2.01 sMultiply:
Vf = 19.7 m/s==================================================================
How long does it take to reach the ground?
Takes time to reach the ground in 2.01 seconds.
How fast does it hit the ground?
Hits the ground with a speed of 19.7 meters per seconds.
A car initially traveling at 15 m/s speeds up at a constant rate of 2.0 m/s2 for 3 seconds. The velocity of the car at the end of the 3 second interval is _________ m/s.
Answer:
Vf = 21 m/s
Explanation:
Data:
Initial Velocity (Vo) = 15 m/sAcceleration (a) = 2.0 m/s²Time (t) = 3 sFinal Velocity (Vf) = ?Use formula:
Vf = Vo + a * tReplace:
Vf = 15 m/s + 2.0 m/s² * 3sMultiply the acceleration with time:
Vf = 15 m/s + 6 m/sSolve the sum:
Vf = 21 m/sThe velocity of the car at the end of the 3 second interval is 21 meters per second.
As an electromagnetic wave travels, what is the relationship between the
magnetic field and the electric field along its path?
A. They are parallel to each other.
B. The angle between them decreases with an increase in energy
O C. The angle between them increases with an increase in energy.
D. They are at a 90° angle to each other.
Answer:
Its D
Explanation:
They are at a 90° angle to each other.
Do good on your tests :]
The answer is D) They are at a 90° angle to each other.
What is an electromagnetic wave?One of the waves which are propagated with the aid of simultaneous periodic versions of electrical and magnetic subject depth and consists of radio waves, infrared, seen mild, ultraviolet, X-rays, and gamma rays.
Radio waves, microwaves, seen light, and x-rays are all examples of electromagnetic waves that range very differently in wavelength. (a) Longer wavelength; (b) shorter wavelength. Electromagnetic waves are produced by means of the motion of electrically charged debris.
Learn more about electromagnetic waves here: https://brainly.com/question/25847009
#SPJ2
Calculate the electric field associated to an electric dipole for two charges separated 10-8 m with a dipole moment of 10-33 C m. Do not use unit of measure, just a whole number. Give the result in standard notation, not in scientific notation. Use for the Coulomb constant the value k
Answer:
18 N/C
Explanation:
Given that:
Electric field constant, k = 9*10^9 N/c
Distance, r = 10^-8 m
Dipole moment, p = 10^-33
Using the relation for electric field due to dipole :
E = [2KP / r³]
E = (2 * (9*10^9) * 10^-33) ÷ (10^-8)^3
E = (18 * 10^9 * 10^-33) ÷ 10^-24
E = [18 * 10^(9-33)] ÷ 10^-24
E = (18 * 10^-24) / 10^-24
E = 18 * 10^-24+24
E = 18 * 10^0
E = 18 N/C
What simple machine can best be described as "a simple machine that uses an inclined plane wrapped around a rod"? *
a wedge
a screw
a wheel and axle
a lever
Henrietta is going off to her physics class, jogging down the sidewalk at a speed of 4.15 m/sm/s. Her husband Bruce suddenly realizes that she left in such a hurry that she forgot her lunch of bagels, so he runs to the window of their apartment, which is a height 55.2 mm above the street level and directly above the sidewalk, to throw them to her. Bruce throws them horizontally at a time 5.50 ss after Henrietta has passed below the window, and she catches them on the run. You can ignore air resistance.
(a) With what initial speed must Bruce throw the bagels so that Henrietta can catch the bag just before it hits the ground?
(b) Where is Henrietta when she catches the bagels?
Answer:
Explanation:
Distance travelled by Henrietta in 5.5 s = 4.15 x 5.5 = 22.825 m .
Time taken by lunch of bagels to fall vertically by 55.2 m . Let it be t .
s = ut + 1/2 g t²
55.2 = 0 + .5 x 9.8 x t²
t² = 11.26
t = 3.356 s
By the time the lunch of bagels touches the hand of Henrietta , she would have travelled further by distance
s = 3.356 x 4.15 = 13.9 m
She is now at distance of 22.825 + 13.9 = 36.725 m from window .
So lunch of bagels must travel a horizontal distance of 36.725 m in 3.356 s which the time of fall of bagel .
Speed of bagel = distance / time
= 36.725 / 3.356
= 10.94 m /s
b )
Henrietta is 36.725 m from window at the time when she catches the bangel.
Does fg increase or decrease when one mass increases
Answer:
It increases because fg means Force of gravity so When the mass of the two objects increases with mass and increases the distance between an object
There you go!!!
On a scale of 1-10 how much do you care of what people think of you?
Answer:
3
Explanation:
my family i hope thinks of me. And I don't have friends for them to think of me.
Problem 6: A bullet in a gun is accelerated from rest from the firing chamber to the end of the barrel at an average rate of 6.3 × 105 m/s2 for 8.2 × 10-4 s.Ball,removedc795646bb4371e1754411a7dadf94458c503446af1b6450bb3269c1f97e8ef53removedremoved58b1e9a401041b69266daacea519e828d050d14013adc67f8c64697e40f2ef89removedtheexpertta - tracking id: 0W86-2A-6A-4E-962A-28979. In accordance with Expert TA's Terms of Service. copying this information to any solutions sharing website is strictly forbidden. Doing so may result in termination of your Expert TA Account.show answer No Attempt What is the gun’s muzzle velocity (that is, the bullet’s final speed), in meters per second
Answer:
v = 5.166 10² m / s
Explanation:
We can solve this exercise using the kinematics equations
v = v₀ + at
as the bullet starts from rest its initial velocity is zero
v = a t
let's calculate
v = 6.3 10⁵ 8.2 10⁻⁴
v = 5.166 10² m / s
Which type of electromagnetic radiation is most likely to cause sunburn?
A. Ultraviolet
B. Visible light
C. Infrared
D. X-rays
What is the mass of a block concrete that gains 52,800 joules of energy when its temperature is increased by 5 degrees Celsius specific heat of concrete 880 J/K degrees Celsius
Answer:
12 kg
Explanation:
q = 52,800 J
c = 880 J/(kg * K) Pretty sure you missed the kg here
ΔT = 5 °C = 5 K (reminder that this only applies to ΔT and not T)
q = mcΔT ⇒ m = q/(cΔT) = 52,800 J / (880 J/(kg * K) * 5 K) = 12 kg
The mass of a block concrete that gains 52,800 joules of energy when its temperature is increased by 5 degrees Celsius specific heat of concrete 880 J/K degrees Celsius is 12kg
The formula for calculating the quantity of heat energy absorbed by the block is expressed as:
Q = mcΔt
Q is the quantity of heat = 52,800 Joules
m is the mass of the concrete
c is the specific heat of concrete = 880 J/K
Δt is the change in temperature = 5 degrees
substitute the given values into the formula:
[tex]52800=m(880)(5)\\52800 = 4400m\\m=\frac{52800}{4400}\\m= 12kg[/tex]
Hence the mass of a block of concrete that gains 52,800 joules of energy when its temperature is increased by 5 degrees Celsius specific heat of concrete 880 J/K degrees Celsius is 12kg
Learn more here: https://brainly.com/question/22991121
Because the top mirror is not perfectly reflective (it reflects 90% of the photons, allowing 10% of them to go through), the power measured at the detector when only the vertical arm is blocked is 2.25 mW, while the power measured at the detector when only the horizontal arm is blocked is only 2.025 mW. Assume initially the intensity is at its maximum. How much would we need to translate the perfect mirror to the right to get a minimum intensity at detector, and what is that minimum intensity
This question is incomplete, the complete question;
you make an interferometer using 50-50 beam splitter and two mirrors, one being a perfect mirror and one which does not reflect all light. The wavelength of the 9 mW incident laser is 400 nm.
Because the top mirror is not perfectly reflective (it reflects 90% of the photons, allowing 10% of them to go through), the power measured at the detector when only the vertical arm is blocked is 2.25 mW, while the power measured at the detector when only the horizontal arm is blocked is only 2.025 mW. Assume initially the intensity is at its maximum. How much would we need to translate the perfect mirror to the right to get a minimum intensity at detector, and what is that minimum intensity
Options;
a) 200 nm; 0.9 mW
b) 100 nm, 0.0059 mW
c) 200 nm; 0 mW
d) 100 nm; 0.9 mW
e) 200 nm; 0.0059 mW
Answer:
the amount we need to translate the perfect mirror to the right to get a minimum intensity at detector and the minimum intensity are;
100 nm; 0.0059 mW
Option b) 100 nm, 0.0059 mW is the correct answer
Explanation:
Given that the instrument here is an interferometer.
Maximum intensity is obtained when the two waves are exactly in phase.
that is the peaks (crusts and troughs) and nodes (zero value points) of the two waves will be at the exact same point when the wave falls on the detector.
The phase factor of this point is taken as ∅ = 0
Now, to get a minimum point, the phase difference between the two waves should be should be ∅ = π
This corresponds to a path difference between the two waves as half of the wavelength. λ/2
The light gets reflected from the mirror.
Hence, when we move the mirror by a length l, the extra/less path the light has to travel is 2l (light is going and coming back)
hence, to get a path difference of λ/2 the mirror should move half of this distance only
so, the mirror should move;
[tex]l[/tex] = λ/4
here, wavelength is 400nm
the length moved by the mirror = 400/4 = 100 nm
The intensity is given by the equation;
[tex]l[/tex] = [tex]l[/tex]1 + [tex]l[/tex]2 + 2√[tex]l[/tex]1[tex]l[/tex]2cos(∅)
where
[tex]l[/tex]1 = 2.25 mW
[tex]l[/tex]2 = 2.025 mW
∅ = π
so we substitute
[tex]l[/tex] = 2.25 + 2.025 - 2√(2.25 × 2.025)
[tex]l[/tex] = 4.275 - 4.26907
[tex]l[/tex] = 0.0059
Therefore; the amount we need to translate the perfect mirror to the right to get a minimum intensity at detector and the minimum intensity are;
100 nm; 0.0059 mW
Option b) 100 nm, 0.0059 mW is the correct answer
How fast would an object have to travel on the surface of Jupiter at the equator to keep up with the Sun (that is, so the Sun would appear to remain in the same position in the sky)? Use the facts that the radius of Jupiter is approximately 44,360 miles and its revolution is approximately 10 hours.
Answer:
27872.2 miles per hour
Explanation:
Given that :
Radius of Jupiter is approximately = 44,360 miles
Revolution is 10 hours ;
Jupiter makes one revolution in 10 hours :
Using the relation to obtain the velocity :
V = re
r = radius
w = 2π/T
Hence,
V = r * 2π/ T
V =44360 * 2 * π/10
V = 88720 * π/10
V = 278722.10 / 10
V = 27872.210
V = 27872.2 miles per hour
The nucleus of an atom can be modeled as several protons and neutrons closely packed together.Each particle has a mass of 1.67 3 10227 kg and radius on the order of 10215 m.
(a) Use this model and the data provided to estimate the density of the nucleus of an atom.
(b) Compare your result with the density of a material such as iron. What do your result and comparison suggest about the structure of matter?
Answer:
Explanation:
Let n be number of total number of nucleons ( protons + neutrons )
Total mass inside nucleus = n x 1.67 x 10⁻²⁷ Kg
volume of nucleus = 4/3 π r³
= 1.33 x 3.14 x (10⁻¹⁵)³ m
= 4.17 x 10⁻⁴⁵ m³
Density = mass / volume
= n x 1.67 x 10⁻²⁷ / 4.17 x 10⁻⁴⁵
= .4 n x 10¹⁸ kg / m³
or of the order of 10¹⁸ kg/m³
b )
Density of iron = 7900 kg / m³
or of the order of 10⁴ kg / m³
So nucleus of a matter is about 10¹⁴ times denser than iron .
Suppose you had 10 identical molecules enclosed by a box. At a given instant, one molecule has an energy of 100 Joules, and the others are all stationary. (A) What is the average kinetic energy of the 10 molecules
Answer:
the average kinetic energy of the 10 molecules is 10 J.
Explanation:
Given;
energy on one molecule in motion, E = 100 J
number of molecules, n = 10
(A) The average kinetic energy of the 10 molecules
since the remaining 9 molecules are at rest, their kinetic energy = 0
[tex]E_{Avg} = \frac{E_1 + E_9}{10} \\\\E_{Avg} = \frac{100J+ 0}{10} \\\\E_{Avg} = \frac{100J}{10} \\\\E_{Avg} = 10J[/tex]
Therefore, the average kinetic energy of the 10 molecules is 10 J.
When observing the two diagrams, what is a concept shared by both?
Answer:
Convection
Explanation:
Convection refers to the transfer of heat by the actual movement of the heated molecules from the hot parts to the cooler parts.
Thus, the two diagrams show illustrate transfer of heat by the movement of molecules of a fluid.
This mode of heat transfer is known as convection. It is the concept illustrated by both diagrams.
Which cell line is pointing to the body?
Answer:
The answer is B .........number 2
Explanation:
A lunar eclipse occurs when the Moon passes through Earth's
Two forces P and Q act on an object of mass 7.00 kg with Q being the larger of the two forces. When both forces are directed to the left, the magnitude of the acceleration of the object is 1.40 m/s2. However, when the force P is directed to the left and the force Q is directed to the right, the object has an acceleration of 0.700 m/s2 to the right. Find the magnitudes of the two forces P and Q .
Answer:
Explanation:
Q is larger than P . When two forces act in the same direction , Resultant force
can be calculated by adding them up . When two forces act in the opposite direction , Resultant force can be calculated by subtracting them .
Force = mass x acceleration .
In the first case
Resultant force = mass x acceleration
P + Q = 7 x 1.4 = 9.8 N
In the second case
Q - P = 7 x 0.7 = 4.9
Adding up these two equations
2 Q = 14.7
Q = 7.35 N
P = 9.8 - 7.35 = 2.45 N .
If a solid metal sphere and a hollow metal sphere of equal diameters are each given the same charge, the electric field (E) midway between the center and the surface is...A. greater for the solid sphere than for the hollow sphere.B. greater for the hollow sphere than for the solid sphere.C. zero for bothD. equal in magnitude for both, but one is opposite in direction from the other.
Answer:
C. zero for both
Explanation:
In case of solid metal sphere , when it is given any charge , all the charges are transferred on the surface and within surface no charge exists . In case of hollow metal sphere , all charges reside on surface . In this way , in both solid and hollow sphere , all charge reside on the surface and no charge resides inside it . Hence due to absence of any charge inside , there is no electric field inside the sphere in both the cases .
Hence in both the case electric field is zero .
option C is correct .
Can someone please help me get this right pleaseee I’ll mark brainless .
Answer:i think it is c
Explanation:
Answer:
Explanation: i think its c to try it
How does Doppler ultrasound technology differ from ultrasound technology
that does not use the Doppler effect?
A. Doppler ultrasound collects data from moving objects.
B. Other ultrasound technology creates images, but Doppler
ultrasound does not.
C. Doppler ultrasound creates images, but other ultrasound
technology does not.
D. Doppler ultrasound is based on absorption of sound, and other
ultrasound technology is based on reflection.
Answer:
A. Doppler ultrasound collects data from moving objects
Explanation:
Did the test !!
Answer:A. Doppler ultrasound collects data from moving objects.
Explanation: just got it right
on my test
A spacecraft and a staellite are at diametrically opposite position in the same circular orbit of altitude 500 km above the earth. As it passes through point A, the spacecraft fires its engine for a short interval of time to increase its speed and enter an elliptical orbit. Knowing that the spacecraft returns to A at the same time the satellite reaches A after completing one and a half orbits, determine (a) the increase in speed required, (b) the periodic time for the elliptic orbit
Answer:
Hello the diagram related to your question is attached below
answer: a) 851 m/s
b) 8506.1 secs
Explanation:
calculate the periodic time of the satellite using the equation below
t = [tex]\frac{2\pi }{R} \sqrt{\frac{(R+h)^{3} }{g} }[/tex] -- ( 1 )
where ; R = 6370 km
h = 500 km
g = 9.81 m/s^2
input given values into equation 1
t = 5670.75 secs
next calculate the periodic time taken by the space craft
a) determine the increase in speed
V = v - [tex]\sqrt{\frac{gR^2}{R + h} }[/tex]
where ; v = 8463 m/s , R = 6370 km, h = 500 km
V = 851 m/s
b) Determine the periodic time for the elliptic orbit
τ = [tex]\frac{3t}{2}[/tex]
= [tex]\frac{3*5670.76}{2}[/tex] = 8506.1 secs
attached below is the remaining part of the detailed solution
5. An astronaut has a mass of 65kg where the gravitational field strength is 10N/kg
a. Calculate the weight of the astronaut on earth
[3]
Answer: a) weight on Earth = mass of the object and gravity n the Earth. = 65*10 = 650 kg.
Explanation:
An astronaut has a mass of 65 kg on Earth where the gravitational field strength is 10 N kg A calculate the astronaut's weight on Earth
hope this helps :)
Answer:
650
Explanation:
use the equation
weight = gm
two students sit on a see-saw. archie is a hulking football player with a mass of 120 kg. clementine is a dainty cheerleader with a mass of 40 kg. the see-saw is 3.5 m in total length with the fulcrum at the center. if clementine sits at the end on one side, where must archie sit relative to the center to keep the see-saw balanced
Answer:
Archie must sit 0.58 m relative to the center to keep the see-saw balanced
Explanation:
Given the data in the question;
Mass of Archie [tex]m_{a}[/tex] = 120 kg
Mass of clementine [tex]m_{c}[/tex] = 40 kg
total length of see-saw L = 3.5 m
as illustrated on the image below, Fulcrum is at the center,
suppose Archie sits at a distance x from center then for balancing, we will have;
[tex]m_{a}[/tex] × x = [tex]m_{c}[/tex] × ( one end = 3.5/2 = 1.75)
so we substitute
120kg × x = 40kg × 1.75m
x12okg = 70 kg.m
x = 70 kg.m / 120 kg
x = 0.58 m
Therefore, Archie must sit 0.58 m relative to the center to keep the see-saw balanced
a. As you coast down a hill on your bicycle, you accelerate at 0.5 m/s2. If the total mass of your body and the bicycle is 80 kilograms what is the net force pulling you down the hill (gravity - friction)?
The net force pulling you down the hill will be = 40 N
What is Newton's Second Law of motion?The Second Law of motion states that the acceleration of an object depend upon the object and the mass of the object.
F = Mass * acceleration
Given
Total mass : 80 kg
Acceleration : 0.5 m / s^2
Net Force = mass * acceleration (Second Law of motion )
Net Force = 80 * 0.5 = 40 N
The net force pulling you down the hill will be = 40 N
Learn more about Newton's Second Law of motion:
https://brainly.com/question/11553356?referrer=searchResults
#SPJ2
A certain brand of hotdog cooker works by applying a potential difference of 144 V across opposite ends of a hot dog and allowing it to cook by means of the thermal energy produced. The current is 10.5 A, and the energy required to cook one hot dog is 60.6 kJ. If the rate at which energy is supplied is unchanged, how long will it take to cook three hot dogs simultaneously
Answer:
120.237 seconds
Explanation:
Given that:
V = 144 V
I = 10.5 A
H = 60.6 kJ
Using the formula:
H = I²RT
From H = I²RT; making T the subject, we have:
[tex]T = \dfrac{H}{I^2R}[/tex]
where;
[tex]R = \dfrac{V}{I}[/tex]
∴
[tex]T = \dfrac{H}{V \times I}[/tex]
[tex]T = \dfrac{60.6 \times 10^3 }{144 \times 10.5}[/tex]
T = 40.079
[tex]T_{neq} = 3T[/tex]
[tex]T_{neq} =3 \times 40.079[/tex]
[tex]\mathbf{T_{neq} =120.237 \ sec}[/tex]