No, because some scientist are bad and they must have a scientific attitude like honesty, curiosity, open-mindedness, optimistic and more. And they should follow others sometimes because for their own good.
Answer:
No
Explanation:
Science operates in the context of national and international laws, agreements and conventions. It requires scientists to conduct and communicate scientific work for the benefit of society, with excellence, integrity, respect, fairness, trustworthiness, clarity, and transparency.
Force of a Baseball Swing. A baseball has mass 0.153 kg . Part A If the velocity of a pitched ball has a magnitude of 44.5 m/s and the batted ball's velocity is 50.5 m/s in the opposite direction, find the magnitude of the change in momentum of the ball and of the impulse applied to it by the bat. Express your answer to three significant figures and include the appropriate units. P
Answer: 14.5 kg.m/s
Explanation:
Given
mass of baseball is [tex]m=0.153\ kg[/tex]
The initial speed of the ball is [tex]u=-44.5\ m/s[/tex]
the final speed of the ball is [tex]v=50.5\ m/s[/tex]
Impulse is given as a change in the momentum
[tex]\vec{J}=\Delta \vec{P}[/tex]
[tex]J=m(v-u)\\J=0.153(50.5-(44.5))\\J=0.153\times 95=14.535\ kg.m/s[/tex]
Change in momentum up to 3 significant figures is 14.5 kg.m/s
Impulse applied by a bat is also the same as the change in momentum
Hi please zoom in to see it clearly, uh you don’t have to answer them all but it would be nice !!! (no links please) :)
Explanation:
Newton's second law of motion states that the external force is directly proportional to the rate of change of momentum. Mathematically, Newton's second law of motion is given by :
F = ma
Where
m is the mass and a is the acceleration
If there is a smaller mass, it would need a weaker force to accelerate it as the force is directly proportional to the mass. Hence, the correct option is (d).
An artificial satellite circling the Earth completes each orbit in 126 minutes. (a) Find the altitude of the satellite.
Answer:
Explanation:
Time period of rotation
T = 2πR/ V where R is radius of orbit and V is orbital velocity
Orbital velocity V = √ ( GM/R ) , m is mass of the earth .
T = 2πR √R / GM
T² = 4π²R³ / GM
Putting the values
( 126 x 60 )² = 4 x 3.14² x R³ / 6.67 x 10⁻¹¹ x 5.97 x 10²⁴
57.15 x 10⁶ = 39.44 x R³ / 39.82 x 10¹³
R³ = 577 X 10¹⁸
R = 8.325 x 10⁶ m
= 8325 km
Radius of earth = 6400 km
height of satellite = 8325- 6400 = 1925 km .
Assume a device is designed to obtain a large potential difference by first charging a bank of capacitors connected in parallel and then activating a switch arrangement that in effect disconnects the capacitors from the charging source and from each other and reconnects them all in a series arrangement. The group of charged capacitors is then discharged in series. What is the maximum potential difference that can be obtained in this manner by using ten 500
Answer:
8 kV
Explanation:
Here is the complete question
Assume a device is designed to obtain a large potential difference by first charging a bank of capacitors connected in parallel and then activating a switch arrangement that in effect disconnects the capacitors from the charging source and from each other and reconnects them all in a series arrangement. The group of charged capacitors is then discharged in series. What is the maximum potential difference that can be obtained in this manner by using ten 500 μF capacitors and an 800−V charging source?
Solution
Since the capacitors are initially connected in parallel, the same voltage of 800 V is applied to each capacitor. The charge on each capacitor Q = CV where C = capacitance = 500 μF and V = voltage = 800 V
So, Q = CV
= 500 × 10⁻⁶ F × 800 V
= 400000 × 10⁻⁶ C
= 0.4 C
Now, when the capacitors are connected in series and the voltage disconnected, the voltage across is capacitor is gotten from Q = CV
V = Q/C
= 0.4 C/500 × 10⁻⁶ F
= 0.0008 × 10⁶ V
= 800 V
The total voltage obtained across the ten capacitors is thus V' = 10V (the voltages are summed up since the capacitors are in series)
= 10 × 800 V
= 8000 V
= 8 kV
Help please. Question about a potential energy.
2. A kayaker is paddling south at 2.50 m/s, and encounters a weird current moving 1.15 m/s west.
What is the resultant velocity?
Answer:
v = 2.91 m/s
Explanation:
Given that,
A kayaker is paddling south at 2.50 m/s, and encounters a weird current moving 1.15 m/s west.
We need to find the resultant velocity. Both velocities are perpendicular to each other. So,
[tex]v=\sqrt{v_1^2+v_2^2} \\\\=\sqrt{2.5^2+1.5^2} \\\\=2.91\ m/s[/tex]
So, the magnitude of the resultant velocity is equal to 2.91 m/s.
PLEASE ANSWER WITH ACTUAL ANSWER AND I WILL MARK BRAINLIEST (IF YOU GIVE ME A SCAMMY ANSWER I WILL REPORT YOU!!!)
A student wants to determine the local value of the gravitational field strength, g , in their classroom. Which of the following experimental set-ups would allow a student to calculate the magnitude of the gravitational field strength using only the quantities measured?
Select TWO answers.
A: Run a lab cart down an inclined plane; measure the length of the ramp and the time it takes the cart to reach the bottom.
B: Hang a known mass from a spring scale; measure the spring scale reading when the mass is at rest.
C: Accelerate a lab cart horizontally; measure the mass of the cart and its acceleration.
D: Drop a heavy metal ball; measure the drop height and the time it takes the ball to hit the ground.
Answer:
Most likely (B)
Explanation:
B in the passage is the most representative out of all your choices and it has evidence from the passage
Hope dis helps Jit!
Sorry i forgot to type C
B and C both measure mass while the others are calculations and are bias
The following experimental set-ups would allow a student to calculate the magnitude of the gravitational field strength using only the quantities measured:
Hang a known mass from a spring scale; measure the spring scale reading when the mass is at rest.Drop a heavy metal ball; measure the drop height and the time it takes the ball to hit the ground.What is gravitational field?A gravitational field is a model used in physics to explain the effects that a large thing has on the area surrounding it, exerting a force on smaller, less massive bodies.
When a known mass from a spring scale is hung; by e; measuring the spring scale reading when the mass is at rest, the magnitude of the gravitational field strength ( reading/mass) can be calculated.
When a heavy metal ball is dropped, by measuring e the drop height and the time it takes the ball to hit the ground, the magnitude of the gravitational field strength ( h = gt²/2) can be calculated. Hence, option (B) and option (D) is correct.
Learn more about gravitational field here:
https://brainly.com/question/26690770
#SPJ2
What fuel does a main-sequence star use for nuclear fusion?
oxygen (0)
petroleum
helium (He)
hydrogen (H)
Answer:
A main sequence star is powered by fusion of hydrogen into helium in its core
Explanation:
A solenoid of 2100 turns, area 10 cm2, and length 30 cm carries a current of 4.0 A. (a) Calculate the magnetic energy stored in the solenoid from 1/2 LI 2. J [2 points] 0 attempt(s) made (maximum allowed for credit
Answer:
E = 0.1472 J
Explanation:
Given that,
The number of turns in the solenoid, N = 2100
Area of the solenoid, A = 10 cm² = 0.001 m²
The length of the solenoid, l = 30 cm = 0.3 m
Current in the solenoid, I = 4 A
We need to find the magnetic energy stored in the solenoid. The expression for the stored energy is :
[tex]E=\dfrac{1}{2}LI^2[/tex]
Where
L is self inductance of the solenoid,
[tex]L=\dfrac{\mu_oN^2A}{l}\\\\L=\dfrac{4\pi \times 10^{-7}\times 2100^2\times 0.001}{0.3}\\\\L=0.0184\ H[/tex]
So,
[tex]E=\dfrac{1}{2}\times 0.0184\times 4^2\\\\E=0.1472\ J[/tex]
So, 0.1472 J of energy is stored in the solenoid.
Each of the two grinding wheels has a diameter of 6 in., a thickness of 3/4 in., and a specific weight of 425 lb/ft3. When switched on, the machine accelerates from rest to its operating speed of 3450 rev/min in 5 sec. When switched off, it comes to rest in 35 sec. Determine the motor torque and frictional moment, assuming that each is constant. Neglect the effects of the inertia of the rotating motor armature.
Answer:
[tex]0.842\ \text{lb ft}[/tex]
[tex]0.1052\ \text{lb ft}[/tex]
Explanation:
d = Diameter of wheel = 6 in
r = Radius = 3 in = [tex]\dfrac{3}{12}=0.25\ \text{ft}[/tex]
t = Thickness = [tex]\dfrac{3}{4}=0.75\ \text{in}=\dfrac{0.75}{12}\ \text{ft}[/tex]
w = Specific weight = [tex]425\ \text{lb/ft}^3[/tex]
[tex]t_2[/tex] = Time taken to slow down = 35 s
[tex]t_1[/tex] = Time taken to reach operating speed = 5 s
[tex]\omega[/tex] = Angular velocity = [tex]3450\times \dfrac{2\pi}{60}\ \text{rad/s}[/tex]
Weight is given by
[tex]W=2\pi r^2tw\\\Rightarrow W=2\pi\times 0.25^2\times \dfrac{0.75}{12}\times 425\\\Rightarrow W=10.43\ \text{lbs}[/tex]
Mass is given by
[tex]m=\dfrac{W}{g}\\\Rightarrow m=\dfrac{10.43}{32}\\\Rightarrow m=0.326\ \text{lb}[/tex]
Moment of inertia is given by
[tex]I=\dfrac{mr^2}{2}\\\Rightarrow I=\dfrac{0.326\times 0.25^2}{2}\\\Rightarrow I=0.01019\ \text{lb ft}^2[/tex]
Angular acceleration while slowing down is given by
[tex]\alpha_f=\dfrac{\omega}{t_2}\\\Rightarrow \alpha_f=\dfrac{3450\times \dfrac{2\pi}{60}}{35}\\\Rightarrow \alpha_f=10.32\ \text{rad/s}^2[/tex]
Frictional moment is given
[tex]\tau_f=I\alpha_f\\\Rightarrow \tau_f=0.01019\times 10.32\\\Rightarrow \tau_f=0.1052\ \text{lb ft}[/tex]
Frictional moment is [tex]0.1052\ \text{lb ft}[/tex]
Angular acceleration while speeding up is given by
[tex]\alpha=\dfrac{\omega}{t_1}\\\Rightarrow \alpha=\dfrac{3450\times \dfrac{2\pi}{60}}{5}\\\Rightarrow \alpha=72.26\ \text{rad/s}^2[/tex]
Motor torque is given by
[tex]\tau_m=\tau_f+I\alpha\\\Rightarrow \tau_m=0.1052+0.01019\times 72.26\\\Rightarrow \tau_m=0.842\ \text{lb ft}[/tex]
Motor torque is [tex]0.842\ \text{lb ft}[/tex].
A car driver spends 3hrs driving at an average speed of 80km/hr, stops for 30 minutes to
have some rest, and then drives at an average speed of 90km/hr for 2 hours.
Calculate the average speed during the whole journey
Answer:
The average speed throughout the journey was 76.36 kilometers per hour.
Explanation:
Given that a car driver spends 3hrs driving at an average speed of 80km / hr, stops for 30 minutes to have some rest, and then drives at an average speed of 90km / hr for 2 hours, to determine the average speed during the whole journey the following calculation must be performed:
80 km / h x 3 = 240 km
90 km / h x 2 = 180 km
240 + 180 = 420 km
3 + 2 + 0.5 = 5.5 hours
420 / 5.5 = 76.36
Thus, the average speed throughout the journey was 76.36 kilometers per hour.
A wave has a frequency of 67 Hz and a wavelength of 7.1 meters. What is the speed of this
wave?
Answer:
475.7 m/s
Explanation:
Given,
Frequency ( f ) = 67 Hz
Wavelength ( λ ) = 7.1 m
To find : Speed ( v ) = ?
Formula : -
v = f λ
v
= 67 x 7.1
= 475.7 m/s
Therefore,
the speed of the wave is 475.7 m/s.
If this is the stationary wall isn’t the ANSWER that there is no work being done? If not what is the correct answer and why? Help!!
Answer:
no work is done cause there is no movement of the wall
Credit-Card Magnetic Strips Experiments carried out on the television show Mythbusters determined that a magnetic field of 1000 gauss is needed to corrupt the information on a credit card's magnetic strip. (They also busted the myth that a credit card can be demagnetized by an electric eel or an eelskin wallet.) Suppose a long, straight wire carries a current of 7.0A . How close can a credit card be held to this wire without damaging its magnetic strip?
Answer:
14 μm
Explanation:
The magnetic field due to a long straight wire is B = μ₀i/2πr where μ₀ = permeability of free space = 4π × 10⁻⁷ H/m, i = current = 7.0 A and r = distance of credit card from magnetic field.
So r = μ₀i/2πB since B = 1000 gauss = 1000 G × 1 T/10000 G = 0.1 T
r = 4π × 10⁻⁷ H/m × 7.0 A/(2π × 0.1 T)
r = 2 × 10⁻⁷ H/m × 7.0 A/0.1 T
r = 14 × 10⁻⁷ H/m × A/0.1 T
r = 140 × 10⁻⁷ m
r = 1.4 × 10⁻⁵ m
r = 14 × 10⁻⁶ m
r = 14 μm
A +3.4 x 10-6 C test charge experiences forces from two other nearby charges: a 3 N force due east and a 15 N force due west. What are the magnitude and direction of the electric field st the location of the test charge?
Answer:
3.53×10⁶ N/c due west
Explanation:
From the question
E = F'/q........................ Equation 1
Where E = Electric Field, F = Net Force, q = Charge.
But,
F' = F₂-F₁...................... Equation 2
Substitute equation 2 into equation 1
E = (F₂-F₁)/q................ Equation 3
Given: F₁ = 3 N due east, F₂ = 15 N due west, q = 3.4×10⁻⁶ C
Substitute these values into equation 1
E = (15-3)/(3.4×10⁻⁶)
E = 12/(3.4×10⁻⁶)
E = 3.53×10⁶ N/c due west
A mass weighing 24 pounds, attached to the end of a spring, stretches it 4 inches. Initially, the mass is released from rest from a point 4 inches above the equilibrium position. Find the equation of motion. (Use g
Answer:
The equation of motion is [tex]x(t)=-[/tex][tex]\frac{1}{3} cos4\sqrt{6t}[/tex]
Explanation:
Lets calculate
The weight attached to the spring is 24 pounds
Acceleration due to gravity is [tex]32ft/s^2[/tex]
Assume x , is spring stretched length is ,4 inches
Converting the length inches into feet [tex]x=\frac{4}{12} =\frac{1}{3}feet[/tex]
The weight (W=mg) is balanced by restoring force ks at equilibrium position
mg=kx
[tex]W=kx[/tex] ⇒ [tex]k=\frac{W}{x}[/tex]
The spring constant , [tex]k=\frac{24}{1/3}[/tex]
= 72
If the mass is displaced from its equilibrium position by an amount x, then the differential equation is
[tex]m\frac{d^2x}{dt} +kx=0[/tex]
[tex]\frac{3}{4} \frac{d^2x}{dt} +72x=0[/tex]
[tex]\frac{d^2x}{dt} +96x=0[/tex]
Auxiliary equation is, [tex]m^2+96=0[/tex]
[tex]m=\sqrt{-96}[/tex]
=[tex]\frac{+}{} i4\sqrt{6}[/tex]
Thus , the solution is [tex]x(t)=c_1cos4\sqrt{6t}+c_2sin4\sqrt{6t}[/tex]
[tex]x'(t)=-4\sqrt{6c_1} sin4\sqrt{6t}+c_2[/tex] [tex]4\sqrt{6}[/tex] [tex]cos4\sqrt{6t}[/tex]
The mass is released from the rest x'(0) = 0
[tex]=-4\sqrt{6c_1} sin4\sqrt{6(0)}+c_2[/tex] [tex]4\sqrt{6}[/tex] [tex]cos4\sqrt{6(0)}[/tex] =0
[tex]c_2[/tex] [tex]4\sqrt{6} =0[/tex]
[tex]c_2=0[/tex]
Therefore , [tex]x(t)=c_1[/tex] [tex]cos 4\sqrt{6t}[/tex]
Since , the mass is released from the rest from 4 inches
[tex]x(0)= -4[/tex] inches
[tex]c_1 cos 4\sqrt{6(0)} =-\frac{4}{12}[/tex] feet
[tex]c_1=-\frac{1}{3}[/tex] feet
Therefore , the equation of motion is [tex]-\frac{1}{3} cos4\sqrt{6t}[/tex]
If each Coulomb of charge is given 20 Joules of energy, what is the voltage of the battery?
A. 20 V
B. 5 V
C. 10 V
D. Not enough info
Answer:
Explanation:
V = J/C
V = 20/1
= 20 v
Option A is the correct answer
Easy physics question help.!!!
Answer: This is not easy lol
Explanation:
Which two chemical equations show double-replacement reactions?
A. C+02 - CO2
B. 2Li + CaCl2 - 2LiCl + Ca
I C. Ca(OH)2 + H2S04 - CaSO4 + 2H20
D. Na2CO3 + H2S - H2CO3 + Na2S
The two chemical equations show double-replacement reactions are Ca(OH)2 + H2S04 - CaSO4 + 2H20 and Na2CO3 + H2S - H2CO3 + Na2S.
What is double replacement reaction?A double replacement reaction have two ionic compounds that are exchanging anions or cations.
From the given options, we can choose the following based on their exchange of anions or cations.
Ca(OH)2 + H2S04 - CaSO4 + 2H20Na2CO3 + H2S - H2CO3 + Na2SThus, the two chemical equations show double-replacement reactions are Ca(OH)2 + H2S04 - CaSO4 + 2H20 and Na2CO3 + H2S - H2CO3 + Na2S.
Learn more about double replacement reaction here: https://brainly.com/question/14281077
#SPJ2
which particle have a mass of 1 u
Answer:
Explanation:
proton
Establishing a potential difference The deflection plates in an oscilloscope are 10 cm by 2 cm with a gap distance of 1 mm. A 100 volt potential difference is suddenly applied to the initially uncharged plates through a 1000 ohm resistor in series with the deflection plates. How long does it take for the potential difference between the deflection plates to reach 60 volts
Answer:
[tex]1.62\times 10^{-8}\ \text{s}[/tex]
Explanation:
[tex]\epsilon_0[/tex] = Vacuum permittivity = [tex]8.854\times 10^{-12}\ \text{F/m}[/tex]
[tex]A[/tex] = Area = [tex]10\times 2\times 10^{-4}\ \text{m}^2[/tex]
[tex]d[/tex] = Distance between plates = 1 mm
[tex]V_c[/tex] = Changed voltage = 60 V
[tex]V[/tex] = Initial voltage = 100 V
[tex]R[/tex] = Resistance = [tex]1000\ \Omega[/tex]
Capacitance is given by
[tex]C=\dfrac{\epsilon_0A}{d}\\\Rightarrow C=\dfrac{8.854\times 10^{-12}\times 10\times 2\times 10^{-4}}{1\times 10^{-3}}\\\Rightarrow C=1.7708\times 10^{-11}\ \text{F}[/tex]
We have the relation
[tex]V_c=V(1-e^{-\dfrac{t}{CR}})\\\Rightarrow e^{-\dfrac{t}{CR}}=1-\dfrac{V_c}{V}\\\Rightarrow -\dfrac{t}{CR}=\ln (1-\dfrac{V_c}{V})\\\Rightarrow t=-CR\ln (1-\dfrac{V_c}{V})\\\Rightarrow t=-1.7708\times 10^{-11}\times 1000\ln(1-\dfrac{60}{100})\\\Rightarrow t=1.62\times 10^{-8}\ \text{s}[/tex]
The time taken for the potential difference to reach the required level is [tex]1.62\times 10^{-8}\ \text{s}[/tex].
Potential energy is best defined as which of the following?
A Mass energy
B Energy of Motion
C Stored Energy
D Energy of height
Answer: C. Stored energy
What happens to a light wave that is absorbed by matter
Answer:
In absorption, the frequency of the incoming light wave is at or near the energy levels of the electrons in the matter. The electrons will absorb the energy of the light wave and change their energy state.
Explanation:
To increase the potential energy of the system, what did you have to do?
Answer:
You can use work to add kinetic energy to a system or to increase potential energy in the system.
Explanation:
Potential energy stored in any system can be released as kinetic energy. Kinetic energy can be transformed to do work or to increase potential energy.
hope this helped
A fox runs at a speed of 16 m/s and then stops to eat a rabbit. If this all took 120
seconds, what was his acceleration?
Answer:
a = 52s²
Explanation:
How to find acceleration
Acceleration (a) is the change in velocity (Δv) over the change in time (Δt), represented by the equation a = Δv/Δt. This allows you to measure how fast velocity changes in meters per second squared (m/s^2). Acceleration is also a vector quantity, so it includes both magnitude and direction.
Solve
We know initial velocity (u = 16), velocity (v = 120) and acceleration (a = ?)
We first need to solve the velocity equation for time (t):
v = u + at
v - u = at
(v - u)/a = t
Plugging in the known values we get,
t = (v - u)/a
t = (16 m/s - 120 m/s) -2/s2
t = -104 m/s / -2 m/s2
t = 52 s
Which of the following could be an example of chemical weathering?
a. rocks tumbling against each other
b. water seeping into the ground, dissolving the limestone to form a cave
c. a waterfall boring out a whole in a rock under it
Answer: B
Explanation:
Answers A and C are examples of physical weathering while B is chemical weathering when water and lime mix it creates a reaction
An electron is travelling in the positive x direction. A uniform electric field is in the negative y direction. If a uniform magnetic field with the appropriate magnitude and direction also exists in the region, the total force on the electron will be zero. The appropriate direction for the magnetic field is:Group of answer choicesthe negative y directioninto the pageout of the pagethe negative x directionthe positive y direction
Answer:
into the page
Explanation:
Since the uniform electric field is in the negative y direction so its is -E and the electron is travelling in the positive x direction, it experiences an electric force F = -e × -E = + eE, so the electric force is in the positive y direction. Now since the net force on the electron is zero in the region of the magnetic field, it follows that the direction of the magnetic force is opposite to that of the electric force. Since the electric force is in the positive y direction, the magnetic force is in the negative y direction.
By the right hand rule, since the magnetic force is in the negative y direction and the electron moves in the positive x direction, it follows that the magnetic field is in the positive z direction, into the page.
Hi please zoom in to see it clearly, uh you don’t have to answer them all but it would be nice !!! (no links please) :D
Galvani wrongly believed that the frog’s leg twitched during his experiment due to _____.
Answer:
nerves
Explanation:
I think, I maybe wrong.
explain how renewable energy source help in the reducing the effects of global warming?
Answer:
Renewable energy minimizes carbon pollution and has a much lower impact on our environment. And it's having its moment in the sun. "Giving more New Yorkers access to renewable energy can allow them to reduce their own energy bills while reducing stress on the grid and demand for fossil fuel power.