Answer:
Rube Goldberg Machine is "a comically involved, complicated invention, laboriously contrived to preform a simple operation." 2. What are the 6 Simple Machines? A. The 6 Simple Machines are: wedge, screw, lever, wheel and axel, inclined plane and pulley.
Help needed for science homework
Help pleaseeeeeeeeeeeeeee
Answer:
im not the best at this but im gonna try helping you
Explanation:
1. li est deux heures cinquante
2. il est huit heures et demie
3. il est douze heures
4. il est quatre heures cinq
5. il est quatre heures quarante cinq
Helppppp 30pointsssssssssssssssssss
Answer:
so sorry i don't know the answer so sorry
How charged objects can affect other objects without touching them. ?
write down 4 situations where magnets are used in our daily life
Answer:
Magnets are used to make a tight seal on the doors to refrigerators and freezers
They power speakers in stereos, earphones, and televisions
Magnets are used to store data in computer's
magnets are used in the compass
Help please!
3. A 75 kg linebacker moving at 6 m/s is running towards an 80 kg tackle moving 4 m/s. If they collide and stick together, how fast will they be moving after the collision?
5. A 6 kg bowling ball and a 4 kg bowling ball are rolled toward each other. The 6 kg ball is initially moving at 5.1 m/s and the 4 kg ball is moving in the opposite direction at 1.3 m/s. If the 6 kg ball slows to 1.5 m/s, what is the final speed of the 4 kg ball?
3. The sum of the players' momenta is equal to the momentum of the players when they're stuck together:
(75 kg) (6 m/s) + (80 kg) (-4 m/s) = (75 kg + 80 kg) v
where v is the velocity of the combined players. Solve for v :
450 kg•m/s - 320 kg•m/s = (155 kg) v
v = (130 kg•m/s) / (155 kg)
v ≈ 0.84 m/s
4. The total momentum of the bowling balls prior to collision is conserved and is the same after their collision, so that
(6 kg) (5.1 m/s) + (4 kg) (-1.3 m/s) = (6 kg) (1.5 m/s) + (4 kg) v
where v is the new velocity of the 4-kg ball. Solve for v :
30.6 kg•m/s - 5.2 kg•m/s = 9 kg•m/s + (4 kg) v
v = (16.4 kg•m/s) / (4 kg)
v = 4.1 m/s
Calculate the Work done if the force is 2000 Newtons
and the distance is 5 km.
Answer:
10 million joules or 10,000 KJ
Explanation:
Work= Force x Displacement
convert 5km into meters -5km=5000m
W= 2000N x 5000m
w=10,000,000 Joules
or 10,000KJ
The table below describes some features of methods used to generate electricity. What is method 3?
Answer:
dam/hydro power
Explanation:
estuary is the place where rivers meet the ocean, there are a lot of currents there (waves...) so it likely means thery use a dam or some sort of way of collecting electricity from the motion of the water there. many birds live in estuaries because of being able to find fish to feed from
Method 3 is "Estuary." describes some features of methods used to generate electricity.
An estuary is a coastal area where freshwater from rivers meets and mixes with saltwater from the ocean. This mixing creates a unique and dynamic environment that can be harnessed for electricity generation using a method called "tidal energy" or "tidal power." Tidal energy is a renewable energy source that captures the kinetic energy generated by the ebb and flow of tides in estuaries.
Ideal Location: Estuaries are ideal locations for tidal energy generation because they experience regular and predictable tidal movements due to the gravitational pull of the moon and sun. The rise and fall of tides create kinetic energy in the moving water.
Method: Tidal energy is harnessed using underwater turbines that are placed in strategic locations within the estuary. As the tidal currents flow in and out, they drive the turbines, which generate mechanical energy. This mechanical energy is then converted into electricity using generators.
Possible Problem: One potential problem associated with tidal energy generation in estuaries is its impact on the local ecosystem. The underwater turbines and infrastructure could potentially disrupt marine life and habitats, affecting fish migration patterns and other aquatic species. It's important to carefully study and manage the environmental impact of tidal energy projects to minimize any negative consequences.
Overall, tidal energy from estuaries offers a renewable and predictable source of electricity, but it requires careful planning and environmental considerations to ensure sustainable and responsible energy production.
To learn more about Estuary, here
https://brainly.com/question/8516305
#SPJ3
a car collides with a wall. compare the forces exerted by the car on the wall and the wall on the car
Answer:
Newton’s third law states that for every action there is an equal and opposite reaction. Based on this you can say that the car crashing into the wall would put force into the wall. However, because the wall didn’t move it gives an equal force back to the car, probably causing it to crumple.
Explanation:
Mass multiplied by acceleration produces force.
The acceleration is (v - 0)/t in this situation, where t seems to be the time it takes automobile A to come to a stop. According to Newton's third law of motion, the automobile produces this turning force of the wall, however the wall, which really is static and indestructible, forces an equal force back on the car.
According to Newton's third law, each action has an equal and opposite response. On this basis, you may deduce that a car driving into a wall would exert force on the wall. However, since the wall did not move, the automobile receives an equivalent force, causing it to collapse.
Learn more:https://brainly.com/question/13952508?referrer=searchResults
How much work is done if a boat has a force 60N and travels 600 meters
Formula
substitute
answer
Answer:
36,000 J
Explanation:
Work is equal to Force times Distance:
W = Fd
W = 60N*600m
36,000 = 60N*600m
define Newton's law of motion
By definition, Newton's First Law, also called the Law of inertia, indicates that "Every body perseveres in its state of rest or of uniform rectilinear motion unless it is forced to change its state by forces impressed on it."
This means that for a body to come out of its state of rest or of uniform rectilinear motion, it is necessary for a force to act on it.
Definition of inertiaSo, in other words, all bodies are opposed to changing their state of rest or motion and this opposition is called inertia.
Body in equilibriumIn this way, a body is in equilibrium when the resultant of the forces acting on it is zero. That is, it is not possible for a body to change its initial state (be it rest or motion) unless one or more forces intervene.
Learn more about Newton's Laws:
https://brainly.com/question/13230056?referrer=searchResults
What are inert gases with example
Answer:
Inert gases:An inert gas is a gas that is unreactive in its environment. The noble gases (helium, neon, argon, krypton, xenon, and radon) are considered inert in most applications. Argon is the cheapest noble gas and thus the most frequently used. In applications insensitive to chemical reactions with nitrogen, even nitrogen gas (N2) may be used as inert gas.a new planet is discovered that has twice the earth’s mass and twice the earth’s radius. on the surface of this new planet, a person who weighs 500 n on earth would experience a gravitational force of
Answer: 250n
Explanation:
The formula for gravitational force is: F = (gMm)/r^2
There are two factors at play here:
1) The mass of the planet 'M'
2) The radius 'r'
We can ignore the small M and the g, they are constants that do not alter the outcome of this question.
You can see that both M and r are double that of earth. So lets say earth has M=1 and r=1. Then, new planet would have M=2 and r=2. Let's sub these two sets into the equation:
Earth. F = M/r^2 = 1/1
New planet. F = M/r^2 = 2/4 = 1/2
So you can see that the force on the new planet is half of that felt on Earth.
The question tells us that the force on earth is 500n for this person, so then on the new planet it would be half! So, 250n!
Can any1 tell if my answer is right
Answer:
The correct answer would be C. 5.0kg
Explanation:
The mass of an object never changes unless parts of the object are taken away. In other words, although the gravitational force is different on the moon then on the earth the mass of the object would remain the same.
Why does the size of a white dwarf affect its visual luminosity?
Answer:
A typical white dwarf has a carbon and oxygen mass similar to the Sun, but is much smaller in size (similar to the Earth). It is much hotter (25,000 K), but because of its small size its luminosity is low. ... Some very nearby white dwarf stars can be observed directly through telescopes, though they are extremely faint.
Explanation:
If astronomers discovered a new planet and found its period of rotation around the Sun to be 105 years, how long would its semi-major axis length be as it orbited the Sun in AU?
From Kepler's third law, its semi-major axis length will be 22.2 AU approximately as it orbited the Sun in AU. The closest option is option C
Given that an astronomers discovered a new planet and found its period of rotation around the Sun to be 105 years.
According to Kepler's third law,
[tex]T^{2} \alpha r^{3}[/tex]
Where
T = Period ( in earth years) = time to complete one orbit
r = Length of the semi major axis in Astronomical unit.
[tex]T^{2}[/tex] = [tex]\frac{4\pi ^{2} }{GM} * r^{3}[/tex]
convert years to seconds
105 x 365 day x 24 hours x 3600 s
T = 3311280000 seconds
Mass of the sun M = 1.989 × 10^30 kg
G = 6.67 x [tex]10^{-11}[/tex]N m^2/kg^2
Substitute all the parameters into the formula
[tex]T^{2}[/tex] = 1.096 x [tex]10^{19}[/tex] = [tex]\frac{4\pi ^{2} }{6.67 * 10^{-11} * 1.989 * 10^{30} } * r^{3}[/tex]
1.096 x [tex]10^{19}[/tex] = 2.976 x [tex]10^{-19}[/tex] [tex]r^{3}[/tex]
[tex]r^{3}[/tex] = 1.096 x [tex]10^{19}[/tex] / 2.976 x [tex]10^{-19}[/tex]
[tex]r^{3}[/tex] = 3.68 x [tex]10^{37}[/tex]
r = [tex]\sqrt[3]{3.68 * 10^{37} }[/tex]
r = 3.33 x [tex]10^{12}[/tex] m
1 AU = 1.5 x [tex]10^{11}[/tex] m
r = 3.33 x [tex]10^{12}[/tex] / 1.5 x [tex]10^{11}[/tex]
r = 22.18 AU
Therefore, its semi-major axis length will be 22.2 AU approximately as it orbited the Sun in AU. The closest option is option C
Learn more about Kepler's laws here: https://brainly.com/question/4639131
Answer:
C. 22.3 AU
Explanation:
Not only is the above an unnecessarily complicated answer, it's not even fully correct, and definitely not what they want you to do.
T^2 = s^3, where T = orbital period and s = semi-major axis length.
Substitute T and you get 105^2 = s^3. Solve for s.
11025 = s^3
3√11025 = s
22.25663649 = s
Therefore, the answer is C. 22.3 AU
what is the affect of density of air in the velocity of sound??
Answer: Hello!
The greater the density of a medium, the slower the speed of sound. This observation is analogous to the fact that the frequency of a simple harmonic motion is inversely proportional to m, the mass of the oscillating object. The speed of sound in air is low, because air is easily compressible.
Explanation:
Mark me brainest please. Hope I helped! Hope you make an 100% Anna♥
Please sub to Addie Nahoe! Bye!♥
What is the acceleration of an object if it starts at a speed of 3 m/s and increases to
8 m/s in 20 seconds?
Answer:
0.25 meters per second squared
Explanation:
The apparent brightness of stars in general tells us nothing about their distances; we cannot assume that the dimmer stars are farther away. In order for the apparent brightness of a star to be a good indicator of its distance, all the stars would have to be:__________.
a. at the same distance
b. the same composition
c. the same luminosity
d. by themselves instead of in binary or double-star systems
e. a lot farther away than they presently are
This property of waves is the only property where the relationship between energy and this property are indirect or inverse
Answer: I don't understand
Explanation:
study and pay attention
A pendulum has a mass of 3 kg and is lifted to a height of 0.3 m. What is the maximum speed of the pendulum
1.Explain why you think it is important to vary your
physical activities from time to time.
2. Define: Lifelong activities and Lifetime sports.
Include similarities, differences and give
examples.
Answer:
I feel like a person should vary their physical activities because it keeps your body in shape and fit and you are able to move around. For example, like running or jogging it helps burn calories and it helps keep your abs/stomach right.
Explanation:
Lower chamber of Congress has how many members?
Answer:435 Representatives
Explanation:The lower chamber of Congress, in which the number of representatives per state is determined by the state's population, with 435 Representatives total. Members of the House of Representatives serve two-year terms, so they are up for reelection every two years.
Select the correct answer.
Which unit abbrevlation is a measurement of force?
ОА.
m/s
OB. m/s2
Ос.
N
OD.
N/S
Answer:
N
S.I unit for force is Newton
A young diver is practicing his skills before an important team competition. Use the diagram below in order to analyze the energies of the diver and complete the statements below.
Where m = mass (kg), g = 9.8 m/s2, v = velocity (m/s), h = height (m), KE = kinetic energy (J), and GPE = gravitational potential energy (J).
Use the equations above to answer the following questions.
A diver with a mass of 90 kg is at a height of 10 m, and he has not jumped off of the board yet (v = 0 m/s). When the diver reaches a height of 5 m (Point C), his gravitational potential energy is
A. 1350 J
B. 8820 J
C. 4410 J
D. 0 J
and his velocity is
E. 4.5 m/s
F. 0 m/s
G. 3.2 m/s
H. 9.9 m/s
Please help will mark brainliest
[tex]\\ \sf\longmapsto GPE=mgh[/tex]
[tex]\\ \sf\longmapsto GPE=90(5)(9.8)[/tex]
[tex]\\ \sf\longmapsto G PE=4410J[/tex]
Now
It's converted to kinetic energy while reaching ground.
[tex]\\ \sf\longmapsto K.E=4410[/tex]
[tex]\\ \sf\longmapsto \dfrac{1}{2}mv^2=4410[/tex]
[tex]\\ \sf\longmapsto 90v^2=8820[/tex]
[tex]\\ \sf\longmapsto v^2=98[/tex]
[tex]\\ \sf\longmapsto v=9.9m/s[/tex]
Done
Answer:
Hope it will help you a lot.
Which of the following is true for gravitational force?
Group of answer choices
Decreases with decrease in distance
Increases with increase in distance
Decreases with increase in mass
Increases with increase in mass
Answer:
The gravitational force b) Increases with increase in mass.
Explanation:
The gravitational force between two objects is given by
F=G\frac{m_1 m_2}{r^2}F=Gr2m1m2
where
G is the gravitational constant
m1, m2 are the masses of the two objects
r is the separation between the objects
From the equation, we notice that:
- The force is proportional to the masses, m1 and m2: so, if the masses increase, the force will increase, and if the masses decrease, the force will decrease
- The force is inversely proportional to the distance between the masses, r: so, if the distance increases, the force will decreases, and if the distance decreases , the force will increases
Therefore, the correct options is only:
Increases with increase in mass
Answer: The answer is b increases in increase of mass because the heavier the object is the more gravitional pull it will have.
Explanation: Which of the following is true for gravitational force?
Group of answer choices
Decreases with decrease in distance
Increases with increase in distance
Decreases with increase in mass
Increases with increase in mass
when is atmospheric pressure 1x10 to the power of 5 and when is it pgh
Answer:
1 atmospheris pressure is equal to10.33 meter under water
Explanation:
right ??
a measure of change in velocity in a measure of time is
[tex]\\ \sf\Rrightarrow Acceleration=\dfrac{\Delta V}{t}[)tex]
In simplified form
[tex]\\ \sf\Rrightarrow Acceleration=\dfrac{dv}{dt}[/tex]
The rate of change of velocity with respect to time period is called acceleration.SI units-m/s^2Explain why stationary waves are seen only certain frequencies (3 marks)
Explanation:
The underlying physics give rise to periodic behavior. Usually, some resonance is involved, in which the media damps waves except those at a specific frequency.
__
Only waves at a specific frequency are recognized as being "stationary." If the frequency varies, the behavior is described as "chaotic." So, it's partly a matter of definition.
Two asteroids crashed. The crash caused both asteroids to change speed. Scientists want to use the change in speed and motion to figure out which asteroid has more mass. Based on the information in the diagram, which statement is correct? In your answer, explain what the forces were like and why the asteroids changed their motion.
Asteroid 1 has more mass than Asteroid 2.
Asteroid 1 and Asteroid 2 are the same mass.
Asteroid 1 has less mass than Asteroid 2.
Answer:
Asteroid 1 has more mass than asteroid 2
Explanation:
User avatar
thenoobygamerpro
01/25/2020
Physics
Middle School
answered
Asteroid 1 moving 8km/s right asteroid 2 moving 16 km/s left before the crash. After the crash asteroid 1 is moving 4 km/s left and changed speed bu 12km/s. Asteroid 2 moving 2km/s left and changed speed by 14km/s
Two asteroids crashed. The crashed caused both asteroids to change speed. Scientist want to use the change in speed and motion to figure out which asteroid has more mass. Based on the information in the diagram. which statement is correct? In your answer explain what the forces were like and why the asteroids changed motions
Asteroid 1 has more mass than asteroid 2
Asteroid 1 and asteroid 2 are the same mass
Or asteroid 1 has lees mass than asteroid 2
1
SEE ANSWER
ADD ANSWER
+41 PTS
spidermanmorales2005 avatar
can you complete the full sentence?
thenoobygamerpro avatar
Sorry finished
Advertisement
thenoobygamerpro is waiting for your help.
Add your answer and earn points.
Answer
4.0/5
9
author_link
cryssatemp
Ace
2.2K answers
12.3M people helped
Answer: Asteroid 1 has more mass than asteroid 2
Explanation:
We can use the conservation of momentum law to find the answer. So, according to this law:
"If two objects or bodies are in a closed system and both collide, the total momentum of these two objects before the collision will be the same as the total momentum of these same two objects after the collision".
This means the momentum before the collision or crash () is equal to the momentum after the collision ():
(1)
Before the crash:
(2)
Where:
is the mass of the first asteroid
is the velocity of the first asteroid
is the mass of the second asteroid
is the velocity of the second asteroid
(3)
After the crash:
(4)
Where:
is the final velocity of the first asteroid
is the final velocity of the second asteroid
(5)
Substituting (3) and (5) in (1):
(6)
Grouping similar terms:
(7)
Then:
(8) This means must be multiplied by 1.16 km/s in order to make this side of the equation equal to .