Answer:
Sample size is [tex]n=423[/tex]
Step-by-step explanation:
Given that,
Margin of error [tex]=4[/tex]%
Confidence level [tex]=90[/tex]%
Suppose, sample proportion[tex]=0.5[/tex]
i.e. [tex]\hat{P}=0.5[/tex]
We know that,
Margin of error [tex]=2^*\sqrt{\frac{\hat{p}(1-\hat{p})}{n} }[/tex]
∴ [tex]1.64\sqrt{\frac{0.5(0.5)}{n} } \leq 4\%[/tex]
[tex]\Rightarrow 1.64\sqrt{\frac{0.25}{n} } \leq 0.04[/tex]
[tex]\Rightarrow \frac{0.5}{\sqrt{n} } \leq \frac{0.04}{1.64}[/tex]
[tex]\Rightarrow \frac{0.5}{\sqrt{n} } \leq 0.0243[/tex]
[tex]\Rightarrow \sqrt{n}\geq \frac{0.5}{0.0243}[/tex]
[tex]\Rightarrow \sqrt{n}\geq 20.57[/tex]
squaring on both side,
∴ [tex]n=423.1249[/tex]
Hence, the sample size is,
[tex]n=423[/tex]
Hence, the correct option is [tex](b).[/tex]
Answer:
423
Step-by-step explanation: