Answer:
5. 60 Ω
6. 60 Ω
7. 10 Ω
8. 0.625 KΩ
Explanation:
5. Determination of the equivalent resistance.
Resistor 1 (R₁) = 10 Ω
Resistor 2 (R₂) = 20 Ω
Resistor 3 (R₃) = 30 Ω
Equivalent Resistance (R) =?
Since the resistors are arranged in series connection, the equivalent resistance can be obtained as follow:
R = R₁ + R₂ + R₃
R = 10 + 20 + 30
R = 60 Ω
Thus, the equivalent resistance is 60 Ω
6. Determination of the equivalent resistance.
Resistor 1 (R₁) = 10 Ω
Resistor 2 (R₂) = 35 Ω
Resistor 3 (R₃) = 15 Ω
Equivalent Resistance (R) =?
Since the resistors are arranged in series connection, the equivalent resistance can be obtained as follow:
R = R₁ + R₂ + R₃
R = 10 + 35 + 15
R = 60 Ω
Thus, the equivalent resistance is 60 Ω
7. Determination of the equivalent resistance.
Resistor 1 (R₁) = 6 Ω
Resistor 2 (R₂) = 4 Ω
Equivalent Resistance (R) =?
Since the resistors are arranged in series connection, the equivalent resistance can be obtained as follow:
R = R₁ + R₂
R = 6 + 4
R = 10 Ω
Thus, the equivalent resistance is 10 Ω
8. Determination of the equivalent resistance.
Resistor 1 (R₁) = 10 KΩ
Resistor 2 (R₂) = 2 KΩ
Resistor 3 (R₃) = 1 KΩ
Equivalent Resistance (R) =?
Since the resistors are arranged in parallel connection, the equivalent resistance can be obtained as follow:
1/R = 1/R₁ + 1/R₂ + 1/R₃
1/R = 1/10 + 1/2 + 1/1
Find the least common multiple (lcm) of 10, 2 and 1. The result is 10. Divide 10 by each of the denominator and multiply the result obtained by the numerator. This is illustrated below:
1/R = (1 + 5 + 10) / 10
1/R = 16/10
Invert
R = 10/16
R = 0.625 KΩ
Thus, the equivalent resistance is 0.625 KΩ.
form
bonds with each other.
There are many kinds of mixtures. Some mixtures are
chunky like a mixture of peanuts and raisins. These
mixtures are called
I
mixtures.
Answer:
Homogeneous mixtures
Explanation:
I think so because homogeneous means mixed mixtures
Determine the potential difference between the ends of the wire of resistance 5 Ω if 720 C passes through it per minute.
Answer:
The potential difference between the ends of a wire is 60 volts.
Explanation:
It is given that,
Resistance, R = 5 ohms
Charge, q = 720 C
Time, t = 1 min = 60 s
We know that the charge flowing per unit charge is called current in the circuit. It is given by :
I = 12 A
Let V is the potential difference between the ends of a wire. It can be calculated using Ohm's law as :
V = IR
V = 60 Volts
So, the potential difference between the ends of a wire is 60 volts. Hence, this is the required solution.
5. What is the period of a vertical mass-spring system that has an amplitude of
71.3 cm and maximum speed of 7.02 m/s? The spring constant is 12.07 N/m.
The period of the vertical mass-spring is 0.64 s.
The given parameters:Amplitude of the spring, A = 71.3 cm Maximum speed of the spring, V = 7.02 m/sSpring constant, k = 12.07 N/mThe angular speed of the vertical mass-spring is calculated as follows;
[tex]V_{max} = A \omega\\\\\omega = \frac{V_{max}}{A} \\\\\omega = \frac{7.02}{0.713} \\\\\omega = 9.85 \ rad/s[/tex]
The period of the vertical mass-spring is calculated as follows;
[tex]f = \frac{\omega }{2\pi} \\\\T = \frac{1}{f} \\\\T = \frac{2 \pi}{\omega } \\\\T = \frac{2\pi }{9.85} \\\\T = 0.64 \ s[/tex]
Thus, the period of the vertical mass-spring is 0.64 s.
Learn more about period of oscillation here: https://brainly.com/question/20070798
large roll of fabric
Costume Rendering
Scissors
Pattern
Bolt
Answer:
Do we have to choose out of those three?
Explanation:
A small wooden block with mass 0.750 kg is suspended from the lower end of a light cord that is 1.40 m long. The block is initially at rest. A bullet with mass 0.0100 kg is fired at the block with a horizontal velocity v0. The bullet strikes the block and becomes embedded in it. After the collision the combined object swings on the end of the cord. When the block has risen a vertical height of 0.800 m, the tension in the cord is 5.00 N.
Required:
What was the initial speed v0 of the bullet?
Answer:
The initial speed of the bullet will be:
[tex]v_{ib}=331.36\: m/s[/tex]
Explanation:
Using the momentum conservation:
[tex]p_{i}=p_{f}[/tex]
[tex]m_{b}v_{ib}=Mv[/tex] (1)
Where:
M is the mass of the black plus the mass of the bulletv(ib) is the initial velocity of the bulletv is the velocity of the block with the bullet inside.Using the conservation of energy:
[tex]\frac{1}{2}Mv^{2}=\frac{1}{2}Mv_{2}^{2}+Mgh [/tex] (2)
Where v(2) is the speed of the system at 0.8 m of vertical height.
Using the forces acting on the system we can find v(2).
The forces can be equal to the centripetal force:
[tex]T-Mg*sin(\alpha)=M\frac{v_{2}^{2}}{L}[/tex]
α is the angle of T with respect to the horizontal, here α = 25.4°
So, v(2) will be:
[tex]T-Mg*sin(\alpha)=M\frac{v_{2}^{2}}{L}[/tex]
[tex]\frac{L}{M}(T-Mg*sin(\alpha))=v_{2}^{2}[/tex]
[tex]\frac{1.4}{0.76}(5-0.76*9.81*sin(25.4))=v_{2}^{2}[/tex]
[tex]v_{2}=1.82 \: m/s[/tex]
Using this value on equation (2) we will find v.
[tex]v^{2}=v_{2}^{2}+2gh [/tex]
[tex]v^{2}=1.82^{2}+2(9.81)(0.8) [/tex]
[tex]v=4.36\: m/s [/tex]
And finally using equation (1) we can find the initial speed of the bullet.
[tex]m_{b}v_{ib}=Mv[/tex]
[tex]0.01*v_{ib}=0.76*4.36[/tex]
[tex]v_{ib}=331.36\: m/s[/tex]
I hope it helps you!
What does the outer part of the disk turn into?
1) Planets and Moons
2) Interstellar Cloud
3) Planetary Nebula
4) It gets sucked into the star
Answer:
what does the outer part of the disk turn into
Explanation:
4) it gets sucked into the star
Radio waves travel at the speed of light. What is the wavelength of a radio signal with a frequency of 9.45 x 10^7 Hz?
The wavelength of this radio signal is equal to 3.18 meters.
Given the following data:
Frequency = [tex]9.45 \times10^7[/tex] Hz.Speed of light = [tex]3 \times 10^8[/tex] m/s.What is wavelength?Wavelength can be defined as the distance between two (2) successive crests (troughs) of a wave.
How to calculate wavelength.Mathematically, the wavelength of a wave is given by this formula:
[tex]\lambda = \frac{V}{F}[/tex]
Where:
F is the frequency of a wave.V is the speed of a sound wave.[tex]\lambda[/tex] is the wavelength of a sound wave.Substituting the given parameters into the formula, we have;
[tex]\lambda = \frac{3 \times 10^8}{9.45 \times10^7}[/tex]
Wavelength = 3.18 meters.
Find more information on waves here: brainly.com/question/23460034
The wavelength of the radio signal travel at speed of light is 3.17m.
Given the data in the question;
Frequency of the radio wave; [tex]f = 9.45 * 10^{7}Hz = 9.45 * 10^{7} s^{-1}[/tex]Wavelength of a radio signal; [tex]\lambda = \ ?[/tex]WavelengthWavelength the spatial period of a periodic wave. That is to say, when the shapes of waves are Wavelength , the distance over which they are repeated is called wavelength. Wavelength is expressed as;
[tex]\lambda = \frac{v}{f}[/tex]
Where [tex]\lambda[/tex] is wavelength, f is the frequency of the wave and c is the velocity or speed of light ( [tex]c = 3*10^8m/s[/tex] )
We substitute our values into the expression above.
[tex]\lambda = \frac{c}{ f}\\ \\\lambda = \frac{3*10^8m/s}{9.45*10^7s^{-1}} \\\\\lambda = \frac{3*10^8ms/s}{9.45*10^7}\\\\\lambda = 3.17m[/tex]
Therefore, the wavelength of the radio signal travel at speed of light is 3.17m.
Learn more about wavelength: brainly.com/question/16776907
Types of RM radiation that make up the electromagnetic spectrum are microwaves, infrared light, ultraviolet light, X-rays, and gamma rays.
True
False
Answer:
True
Explanation:
The electromagnetic spectrum can be regarded as term that give description of range of light that are in existence, and this range from radio waves up to gamma rays. It can be explained as
range of frequencies that electromagnetic radiation takes with thier respective wavelengths as well as photon energies
The Types of electromagnetic radiation that make up the electromagnetic spectrum are
✓ microwaves
✓ infrared light
✓ ultraviolet light
✓X-rays,
✓gamma rays.
Why did the “yielders” conform in Asch’s experiment?
Answer:
Asch's experiment showed that about 75% of people were "yielders" who conformed and 25% were "independent" who didn't conform. Asch concludes that people ignored reality and gave an incorrect answer in order to follow the rest of the group.
HELP!!!!
A student did an experiment to determine the
specific heat capacity of an unknown metal.
She heated 1.00 x 10- kg of the metal to 225°C
and quickly placed it in an insulated container
(negligible specific heat capacity) that contained
0.0900 kg of water at a temperature of 18.0°C.
What is the final temperature of the water if the
specific heat capacity of the metal is
2.11 x 102 J/kg.°C?
Answer:
T₂ = 16.83°C
Explanation:
Applying the law of conservation of energy principle here in this situation we get the following equation:
[tex]Energy\ Lost\ by\ Metal = Energy\ Gaine\ by\ Water\\m_{metal}C_{metal}(T_2-T_{1metal}) = m_{w}C_{w}(T_2-T_{1w})[/tex]
where,
T₂ = Final Temperature of Water = Final Temperature of Metal = ?
C_metal = Specififc Heat Capacity of the metal = 2.11 x 10² J/lg.°C
T_1metal = Initial Temperature of Metal = 225°C
m_metal = mass of metal = 1 x 10⁻²[tex](0.01\ kg)(211\ J/kg.^oC)(T_2-225^oC) = (0.09\ kg)(4184\ J/kg.^oC)(T_2-18^oC)\\2.11 T_2 - 474.75 = 376.56T_2 - 6778.08\\374.45T_2 = 6303.33\\[/tex] kg (exponent assumed due to missing info in question)
C_w = Specififc Heat Capacity of the water = 4184 J/lg.°C
T_1w = Initial Temperature of water = 18°C
m_w = mass of water = 0.09 kg
Therefore,
[tex](0.01\ kg)(211\ J/kg.^oC)(T_2-225^oC)=(0.09\ kg)(4184\ J/kg.^oC)(T_2-18^oC)\\\\2.11 - 474.75T_2 = 376.56 - 6778.08T_2\\[/tex]
T₂ = 16.83°C
I WILL REPORT YOU IF YOU ANSWER WITH LINK!!! WILL GIVE BRAINLIEST
You have two identical bowling balls that are 1.00 m apart as measured from their centers. There is an attractive force of gravity between them due to their mass. When a net charge of +0.40 nC is placed on each bowling ball, the force exerted by the electrostatic forces exactly balances the force of gravity on the bowling balls resulting in a net charge of zero. The formula for the electrostatic force is similar to the formula for the gravitational force. There is a constant that is multiplied by the magnitude of each of the two charges and divided by the square of the distance between them. What two conclusions can you draw from this information?
CHOOSE 2 ANSWERS
Answer:
I think is is
Explanation:
B and C why because i have a gut feeling
If a gas turned into a solid without going through the liquid state and how do you reverse it?
Answer:
put it in a volcano
Explanation:
Which of the following is the most important difference between a permanent magnet and a electromagnet
Answer:
Explanation: the major difference between an electromagnet and permanent magnet is that the former can have a magnetic field when electric current flows through it and disappears when the flow of the current stops. ... It will always displays the magnetic behaviour.
So the the greater the height, the
farther something can fall, the greater
the potential energy.
True
False
PLEASE HELP ME IN THE QUESTION ALSO! because I didn't understand
Answer:
3.69 m/s²
Explanation:
weight = mass × Acceleration of gravity
479.96 = 129.72 × Acceleration of gravity
Acceleration of gravity = 479.96/129.72 = 3.69 m/s²
You desire to observe details of the Statue of Freedom, the sculpture by Thomas Crawford that is the crowning feature of the dome of the United States Capitol in Washington, D.C. For this purpose, you construct a refracting telescope, using as its objective a lens with focal length 86.3 cm. In order to acheive an angular magnification of magnitude 5.01, what focal length fe should the eyepiece have?
Answer:
the focal length of the eyepiece is 17.23 cm
Explanation:
The computation of the focal length of the eyepiece is shown below:
= Focal length of objective lens ÷ angular magnification magnitude
= 86.3 ÷ -5.01
= 17.23 cm
Hence, the focal length of the eyepiece is 17.23 cm
We simply divided the angular magnification magnitude from the focal length of objective lens so that the focal length of the eyepiece could come
which process of the method a neutral object obtains an. electrical charge
A ray of laser light strikes a glass surface at an angle a=25.0° tot he normal and it is refracted to an angle b=18.5° to the normal. What is the index of refraction nb for this type of glass? Na=1.00
A. 3.26
B. 3.52
C. 1.32
D. 1.89
Answer:
1.33
Explanation:
According to snell's law,
n = sin(a)/sin(b)
Given
a = 25.0°
b = 18.5°
Substitute
n = sin25/sin18.5
n = 0.4226/0.3173
n = 1.33
Hence the index of refraction nb for this type of glass is 1.33
Aliens from the planet Mars can have long or short antennas. The allele for a long antenna is DOMINANT, and the allele for a short antenna is RECESSIVE. Which of the following is the pair of alleles an alien would have to inherit to have a short antenna?
Recessive, dominant
Dominant, dominant
Recessive, recessive
Dominant, recessive
Answer:
Recessive, dominant
Explanation:
umm thats the answer
The Image shows a magnetic field around the poles of a magnet. Identify the areas where the magnetic force is the strongest.
N
Answer:
strongest are at the points of the north pole and the south pole, specifically between the red box and the letter of each pole.
Explanation:
The lines of magnetic force are drawn so that the density of lines is proportional to the intensity of the magnetic field.
Therefore, the sections where the magnetic field is strongest are at the points of the north pole and the south pole, specifically between the red box and the letter of each pole.
Franny drew a diagram to compare images produced by concave and convex lenses.
2 overlapping circles, the left circle labeled Concave lenses and the right circle labeled Convex lenses. An X in the overlap.
Which belongs in the area marked X?
Answer:
Virtual
Explanation:
Answer:
B. Virtual
Good Luck!
Although the use of absorbances at 450 nm provided you with maximum sensitivity, the absorbances at, say, 400 nm or 500 nm are not zero and could have been used throughout this experiment. Would the same value of K be obtained at one of these wavelengths
Answer:
Yes, the value will be the same.
Explanation:
Yes, or at least to some degree, that value of K will remain the same. You're looking for a difference in absorbance, and the difference should be visible at all wavelengths, not only at the limit. That being said, resolution varies, and if we don't read the value to the maximum, we can get a less accurate reading.
PLEASE HELPPPPPP <333
Answer:
Explanation:
The answer is c. I am very sure
Answer:
i think its b
Explanation:
im not very sure
. A circular wire loop 40 cm in diameter has 100 Ohm resistance and lies in a horizontal plane. A uniform magnetic field points vertically downward, and in 25 ms it increases from 5 mT to 55 mT. Find the magnetic flux through the loop at (a) the beginning and (b) the end of 25 ms period. (c) What is the loop current during this time
Answer:
(a) 6.283 Wb (b) 69.11 Wb (c) I = 0.628 A
Explanation:
Given that,
The diameter of the loop, d = 40 cm
Radius, r = 20 cm
Initial magnetic field, B = 5 mT
Final magnetic field, B' = 55 mT
Initial magnetic flux,
[tex]\phi_i=BA\\\\=5\times 10^{-3}\times \pi \times 20^2\\\\=6.283\ Wb[/tex]
Final magnetic flux,
[tex]\phi_f=B'A\\\\=55\times 10^{-3}\times \pi \times 20^2\\\\=69.11\ Wb[/tex]
Due to change in magnetic field an emf will be generated in the loop. It is given by :
[tex]\epsilon=-\dfrac{d\phi}{dt}\\\\=\phi_f-\phi_i\\\\=69.11-6.283\\\\=62.827\ V[/tex]
Let I be the current in the loop. We can find it using Ohm's law such that,
[tex]\epsilon=IR\\\\I=\dfrac{\epsilon}{R}\\\\I=\dfrac{62.827}{100}\\\\=0.628\ A[/tex]
Hence, this is the required solution.
Imagine that the satellite described in the problem introduction is used to transmit television signals. You have a satellite TV reciever consisting of a circular dish of radius RRR which focuses the electromagnetic energy incident from the satellite onto a receiver which has a surface area of 5 cm2cm2. How large does the radius RRR of the dish have to be to achieve an electric field vector amplitude of 0.1 mV/mmV/m at the receiver
Answer:
R₁ = 0.126 m
Explanation:
Let's use the definition of intensity which is the power per unit area
I = P / A
the generated power is constant
P = I A
power is
P = E / t
if we perform the calculations for a given time, the wave energy is
E = q V
we substitute
P = [tex]\frac{q V\ A}{t}[/tex]
we can write this equation for two points, point 1 the antenna and point 2 the receiver
V₁A₁ = V₂A₂
A₁ = [tex]\frac{V_2}{V_1} \ A_2[/tex]
A₁ = 0.1 10⁻³ 5 10⁻⁴ /V₁
A₁ = 5 10⁻⁸ /V₁
In general, the electric field on the antenna is very small on the order of micro volts, suppose V₁ = 1 10⁻⁶ V
let's calculate
A₁ = 5 10⁻⁸ / 1 10⁻⁶
A₁ = 5 10⁻² m²
the area of a circle is
A = π r²
we substitute
π R1₁²= 5 10⁻²
R₁ = [tex]\sqrt{ \frac{5 \ 10^{-2} }{\pi } }}[/tex]
R₁ = 0.126 m
A particle of ink in a ink-jet printer carries a charge of -8x 10^-13 C and is deflected onto paper force of 3.2x10^-4. Find the strength of the electric field
Question /
Which object is shown below?
A. Convex mirror
B. Convex lens
C. Concave lens
D. Concave mirror
SLIDNAT
6. Applying Explain how scientists see what early galaxies looked like..
Answer: The younger elliptical and lenticular galaxies had results similar to spiral galaxies like the Milky Way. The researchers found that the older galaxies have a larger fraction of low-mass stars than their younger counterparts.
Explanation:
During a soccer game, a player grabs and holds an opponent's shirt outside of the penalty box. After the foul is called, what kick is awarded to put the ball back into play?
a
Penalty Kick
b
Indirect Free Kick
c
Kickoff
d
Direct Free Kick
An electron moves through a region of crossed electric and magnetic fields. The electric field E = 3059 V/m and is directed straight down. The magnetic field B = 1.14 T and is directed to the left. For what velocity v of the electron into the paper will the electric force exactly cancel the magnetic force?
Answer:
v = 2683.33 m/s
Explanation:
The magnetic force and the electric force on the electron must be the same, in order for them to cancel each other:
[tex]Electric\ Force = Magnetic\ Force\\Eq = qvBSin\theta \\\\v = \frac{E}{BSin\theta}[/tex]
where,
v = velcoity of electron = ?
E = Electric Field = 3059 V/m
B = Magnetic Field = 1.14 T
θ = Angle between velocity and magnetic field = 90°
Therefore,
[tex]v = \frac{3059\ V/m}{(1.14\ T)Sin90^o}[/tex]
v = 2683.33 m/s