At position A within a tube containing fluid that is moving with steady laminar flow, the speed of the fluid is 12.0 m/s and the tube has a diameter 12.00 cm. At position B, the speed of the fluid is 18.0 m/s and the tube has a diameter 6.00 cm. What is the ratio of the density of the fluid at position A to the density of the fluid at position B

Answers

Answer 1

Answer:

0.375

Explanation:

For incompressible flow, we know that;

ρ1•v1•A1 = ρ2•v2•A2

Where;

ρ1 = density of fluid at position A

v1 = speed of fluid at position A

A1 = area of tube

ρ2 = density of fluid at position B

v2 = speed of fluid at position B

A2 = area of tube

We want to find ratio of the density of the fluid at position A to the density of the fluid at position B.

Thus;

ρ1/ρ2 = (v2•A2)/(v1•A1)

Now, the tube will have the same height.

But we are given;

diameter of A = 12.00 cm = 0.12 m

diameter of B = 6 cm = 0.06 m

Thus;

A1 = π(d²/4)h = πh(0.12²/4)

A2 = πh(0.06²/4)

We are also given;

v1 = 12 m/s

v2 = 18 m/s

Thus;

ρ1/ρ2 = (18 × πh(0.06²/4))/(12 × πh(0.12²/4))

πh/4 will cancel out to give;

ρ1/ρ2 = (18 × 0.06²)/(12 × 0.12²)

ρ1/ρ2 = 0.375


Related Questions

A uniform-density 7 kg disk of radius 0.20 m is mounted on a nearly frictionless axle. Initially it is not spinning. A string is wrapped tightly around the disk, and you pull on the string with a constant force of 42 N through a distance of 0.9 m. Now what is the angular speed

Answers

Answer:

The angular speed is 23.24 rad/s.

Explanation:

Given;

mass of the disk, m = 7 kg

radius of the disk, r = 0.2 m

applied force, F = 42 N

distance moved by disk, d = 0.9 m

The torque experienced by the disk is calculated as follows;

τ = F x d = I x α

where;

I is the moment of inertia of the disk = ¹/₂mr²

α is the angular acceleration

F x r = ¹/₂mr² x α

The angular acceleration is calculated as;

[tex]\alpha = \frac{2Fr}{mr^2} \\\\\ \alpha = \frac{2F}{mr}\\\\\alpha = \frac{2 \times 42 }{7 \times 0.2} \\\\\alpha = 60 \ rad/s^2[/tex]

The angular speed is determined by applying the following kinematic equation;

[tex]\omega _f^2 = \omega_i ^2 + 2\alpha \theta[/tex]

initial angular speed, ωi = 0

angular distance, θ = d/r = 0.9/0.2 = 4.5 rad

[tex]\omega _f^2 = 2\alpha \theta\\\\\omega _f = \sqrt{2\alpha \theta} \\\\\omega _f = \sqrt{2 \times 60 \times 4.5} \\\\\omega _f = 23.24 \ rad/s[/tex]

Therefore, the angular speed is 23.24 rad/s.

PLEASE HELP
Section 1 - Question 6
Wave Movement Through Media
What could be happening to the wave as it travels from left to right?
A
It's moving through a medium whose density stays the same
B
It's moving from a low density medium to a high density medium.
С
It's moving from a high density medium to a low density medium.
D
It's moving from a low density medium, to a high density medium, and then back to a low density medium

Answers

Answer: B

Explanation:

Soap bubbles can display impressive colors, which are the result of the enhanced reflection of light of particular wavelengths from the bubbles' walls. For a soap solution with an index of refraction of 1.21, find the minimum wall thickness that will enhance the reflection of light of wavelength 711 nm in air.

Answers

Answer:

the minimum wall thickness that will enhance the reflection of light is 146.9 nm

Explanation:

Given the data in the question;

At the first interface, a phase shift occurs as the incident light is in air that has less refractive index compare to the thin film of soap bubble.

At the second interface, no shift occurs,

condition for constructive interference;

t = ( m + 1/2) × λ/2n

where m = 0, 1, 2, 3 . . . . . .

now, the condition for the constructive interference;

t = mλ/2n

where t is the thickness of the soap bubble,  λ is the wavelength of light and n is the refractive index of soap bubble.

so the minimum thickness of the film which will enhance reflection of light will be;

t[tex]_{min[/tex] =  ( m + 1/2) × λ/2n

we substitute

t[tex]_{min[/tex] =  ( 0 + 1/2) × 711 /2(1.21)

t[tex]_{min[/tex] = 0.5 × 711/2.42

t[tex]_{min[/tex] = 0.5 × 293.80165

t[tex]_{min[/tex] = 146.9 nm

Therefore,  the minimum wall thickness that will enhance the reflection of light is 146.9 nm

Sam moves an 800 N wheelbarrow 5 meters in 15 seconds. How much work did he do?

Answers

Answer:

work done= force × displacement

=800×5

=4000J

Explanation:

The amount of work done is the result of the magnitude of force applied and the displacement of the body due to the force applied. Therefore, work done is defined as the product of the applied force and the displacement of the body.

Time of the day when the Sun does not shine (___time)
N____N

Answers

I-
nighttime? So put night in the blank

A particle with an initial linear momentum of 2.00 kg-m/s directed along the positive x-axis collides with a second particle, which has an initial linear momentum of4.00 kg-m/s, directed along the positive y-axis. The final momentum of the first particle is 3.00 kg-m/s, directed 45.0 above the positive x-axis.

a. the magnitude and direction (angle expressed counter-clockwise with respect to the positive x-axis) of the final momentum for the second particle
b. assuming that these particles have the same mass, % loss of their total kinetic energy after they collided

Answers

Answer:

a) p₂ = 1.88 kg*m/s

   θ = 273.4 º

b)  Kf = 37% of Ko

Explanation:

a)

Assuming no external forces acting during the collision, total momentum must be conserved.Since momentum is a vector, their components (projected along two axes perpendicular each other, x- and y- in this case) must be conserved too.The initial momenta of both particles are directed one along the x-axis, and the other one along the y-axis.So for the particle moving along the positive x-axis, we can write the following equations for its initial momentum:

       [tex]p_{o1x} = 2.00 kg*m/s (1)[/tex]

       [tex]p_{o1y} = 0 (2)[/tex]

We can do the same for the particle moving along the positive y-axis:

        [tex]p_{o2x} = 0 (3)[/tex]

        [tex]p_{o2y} = 4.00 kg*m/s (4)[/tex]

Now, we know the value of magnitude of the final momentum p1, and the angle that makes with the positive x-axis.Applying the definition of cosine and sine of an angle, we can find the x- and y- components of the final momentum of the first particle, as follows:

       [tex]p_{f1x} = 3.00 kg*m/s * cos 45 = 2.12 kg*m/s (5)[/tex]

      [tex]p_{f1y} = 3.00 kg*m/s sin 45 = 2.12 kg*m/s (6)[/tex]

Now, the total initial momentum, along these directions, must be equal to the total final momentum.We can write the equation for the x- axis as follows:

       [tex]p_{o1x} + p_{o2x} = p_{f1x} + p_{f2x} (7)[/tex]

We know from (3) that p₀₂ₓ = 0, and we have the values of p₀1ₓ from (1) and pf₁ₓ from (5) so we can solve (7) for pf₂ₓ, as follows:

       [tex]p_{f2x} = p_{o1x} - p_{f1x} = 2.00kg*m*/s - 2.12 kg*m/s = -0.12 kg*m/s (8)[/tex]

Now, we can repeat exactly the same process for the y- axis, as follows:

       [tex]p_{o1y} + p_{o2y} = p_{f1y} + p_{f2y} (9)[/tex]

We know from (2) that p₀1y = 0, and we have the values of p₀₂y from (4) and pf₁y from (6) so we can solve (9) for pf₂y, as follows:

       [tex]p_{f2y} = p_{o1y} - p_{f1y} = 4.00kg*m*/s - 2.12 kg*m/s = 1.88 kg*m/s (10)[/tex]

Since we have the x- and y- components of the final momentum of  the second particle, we can find its magnitude applying the Pythagorean Theorem, as follows:

       [tex]p_{f2} = \sqrt{p_{f2x} ^{2} + p_{f2y} ^{2} } = \sqrt{(-0.12m/s)^{2} +(1.88m/s)^{2}} = 1.88 kg*m/s (11)[/tex]

We can find the angle that this vector makes with the positive x- axis, applying the definition of tangent of an angle, as follows:

       [tex]tg \theta = \frac{p_{2fy} }{p_{2fx} } = \frac{1.88m/s}{(-0.12m/s} = -15.7 (12)[/tex]

The angle that we are looking for is just the arc tg of (12) which measured in a counter-clockwise direction from the positive x- axis, is just 273.4º.

b)

Assuming that both masses are equal each other, we find that the momenta are proportional to the speeds, so we find that the relationship from the final kinetic energy and the initial one can be expressed as follows:

       [tex]\frac{K_{f}}{K_{o} } = \frac{v_{f1}^{2} + v_{f2} ^{2}}{v_{o1}^{2} + v_{o2} ^{2} } = \frac{12.5}{20} = 0.63 (13)[/tex]

So, the final kinetic energy has lost a 37% of the initial one.

If you push with a power of 20 Watts
on a 150 Newton object, how long would
it take to push it over the 4.3 m?

Answers

Answer:

32.25 s

Explanation:

From the question,

P = W/t.............. Equation 1

Where P = Power, W = work done, t = time.

But

W = F×d................. Equation 2

Where F = force and d = distance

Substitute equation 2 into equation 1

P = F×d/t............... Equation 3

make t the subject of euqation 3

t = (F×d)/P............. Equation 4

Givn: F = 150 N, d = 4.3 m, P = 20 watts.

Substitute these values into equation 4

t = (150×4.3)/20

t = 32.25 s

Which of the following have frequencies greater than orange light Your answer:
radio waves
purple light
ultraviolet rays
red light
green light
gamma rays
microwaves
infrared rays

Answers

Answer:

Gamma Rays have the highest frequencies

Explanation:

This is because Gamma rays have the highest energies, the shortest wavelengths, and the highest frequencies compared to the other light frequency. Radio waves, on the other hand, have the lowest energies, longest wavelengths, and lowest frequencies of any type of EM radiation which means the answer has to be gamma rays. Brainly Please!!!! Here are screenshots that may help

A 40 kg rock is rolling toward a town at 4 m/s after an earthquake. Calculate the KE.

Be sure to show your work and include units!

Use the formula KE = 1/2mv2 will brainlist

Answers

Answer:

320 J

Explanation:

From the question,

KE = 1/2mv².................. Equation 1

Where KE = Kinetic Energy, m = mass of the rock, v = velocity of the rock

Given: m = 40 kg, v = 4m/s

Substitute these values into equation 1

KE = 1/2(40)(4²)

KE = 20×16

KE = 320 J

Hence the kinetic energy of the rock is 320 J

Find the momentum of a 15 kg object traveling at 7 m/s

What is the momentum
What is the velocity
What is the mass

What equation did you use to solve?

Answers

Find the momentum of a 15 kg object traveling at 7 m/s.

The momentum of an object is found by using the following formula:

[tex]\displaystyle p=mv[/tex]

P is the momentum and is measured in kg · m/sm is the mass and is measured in kgv is the velocity and is measured in m/s

In this question, the object is 15 kg and is travelling at 7 m/s. That means the mass is 15 kg and the velocity is 7 m/s.

Since all the needed variables are found, substitute it into the equation:

[tex]\displaystyle p=mv \rightarrow p=15 \times 7[/tex]

Multiply:

[tex]\displaystyle p=105\ kg \times m/s[/tex]

__________________________________________________________

What is the momentum? 105 kg · m/s

What is the velocity? 7 m/s

What is the mass? 15 kg

What equation did you use to solve? p = mv

__________________________________________________________

A 1500-kg car travelling 90 km/h[N] collides with a 1200-kg minivan travelling 40 km/h[S]. After the collision, the two vehicles stick together.

a. Calculate the initial momentum of the car and the minivan.

b. Using the law of conservation of momentum, determine the total momentum of the two vehicles after the collision.

c. Calculate the final velocity of the two vehicles after the collision in metres per second.

Answers

Answer:

A) car - 37500 kg*m/s, minivan - 13332 kg*m/s

B) 50832 kg*m/s

C) 18.83 m/s

Explanation:

Realize that sticky collisions are modeled by: m1v1+m2v2=(m1+m2) vf

conevert to m/s....car going 25 m/s, minivan going 11.11 m/s

A) p=mv

p(car)=(1500)(25)

p(car)=37500 kg*m/s

p(minivan)=(1200)(11.11)

p(minivan)=13332 kg*m/s

B) 37500+13332=50832 kg*m/s

C) 37500+13332=(1500+1200) vf

50832=2700(vf)

18.83 m/s = vf

A group of particles of total mass 48 kg has a total kinetic energy of 320 J. The kinetic energy relative to the center of mass is 80 J. What is the speed of the center of mass?

Answers

K=.5mv^2 + relative Ke
320=.5(48)v^2+80
V=3.16

Which of these is the BEST answer for why science is important?
Science can take us to other planets, even if it’s only through a telescope.
Science is part of human nature; it helps answer questions about how the world works.
Science helps us learn to think more critically and weigh evidence better.
Science gives us better tablet computers and games.

QQQUUUUCCCKKKK!!!!!!

Answers

3) science helps us learn to think more critically and weigh evidence better ( I guess this the answer) :)

HELP DUE TODAY BEST ANSWER GET BRAINLIE
One of the greatest dangers in a tornado is from flying objects. A 15 pound piece of lumber can turn into a flying missile that could severely damage walls and homes. A piece of steel with a mass of 200 pounds and travelling at the same velocity would cause even more damage. Select any evidence from the list below that you could use to explain why a 200 pound piece of steel would cause more damage than a 15 pound piece of wood travelling at the same velocity.

As the kinetic energy of an object increases, the force it can exert on another object decreases.

As the kinetic energy of an object increases, the force it can exert on another object increases.

Objects with more mass have less kinetic energy.

Objects with more mass have more kinetic energy.

As the velocity of an object increases, its kinetic energy decreases.

As the velocity of an object increases, its kinetic energy increases.

Answers

I uploaded the answer to a file hosting. Here's link:

tinyurl.com/wpazsebu

5. How much heat is needed to warm .052 kg of gold from 30°C to 120°C? Note: Gold has a specific heat of 136

J/kg °C

Answers

Answer:

Q = 636.48 J

Explanation:

Given that,

The mass of gold, m = 0.052 kg

The temperature increase from 30°C to 120°C.

The specific heat of gold is 136  J/kg °C.

We need to find the heat needed to warm the gold. The formula for heat needed is given by :

[tex]Q=mc\Delta T\\\\Q=0.052\times 136\times (120-30)\\\\Q=636.48\ J[/tex]

So, 636.48 J of heat is needed to warm gold.

(will give brainliest to whoever is correct and shows reasoning) What is the acceleration of an object that has a velocity of 60m/s and is moving in a circle of radius 50m?

Answers

Answer:

5.0/s

Explanation:

Answer:

b and a it is this that abewsr

A small glider is placed against a compressed spring at the bottom of an air track that slopes upward at an angle of 38.0 ∘ above the horizontal. The glider has mass 9.00×10−2 kg. The spring has 590 N/m and negligible mass. When the spring is released, the glider travels a maximum distance of 1.70 m along the air track before sliding back down. Before reaching this maximum distance, the glider loses contact with the spring.

Required:
a. What distance was the spring originally compressed?
b. When the glider has traveled along the air track 0.80 m from its initial position against the compressed spring, is it still in contact with the spring? What is the kinetic energy of the glider at this point?

Answers

Answer:

x = 0.056 m

ΔKE = 0.489 J

Explanation:

Given that

Angle, θ = 38°

Length, L = 1.7 m

Mass, m = 0.09 kg

Spring constant, K = 590 N/m

If we use the Work-Energy theorem, then we know that Potential Energy, PE = Kinetic Energy, KE

This is mathematically written as

1/2kx² = mgH

The height, H we can get by using the relation

H = L.Sinθ

H = 1.7 * Sin 38

H = 1.7 * 0.6157

H = 1.047 m

Next, we use the Work-Energy theorem

1/2kx² = mgH

1/2 * 590 * x² = 0.09 * 9.8 * 1.047

295 * x² = 0.9234

x² = 0.9235 / 295

x² = 0.00313

x = √0.00313

x = 0.056 m

If the spring loses contact at x = 0.056, definitely, it will also lose contact at x = 0.8

Then we use the formula

ΔKE = mg(H - H1)

ΔKE = mg(xsinθ - x2.sinθ)

Where, x = 1.7 , x2 = 0.8

ΔKE = 0.09 * 9.8 (1.7 * sin 38 - 0.8 * sin 38)

ΔKE = 0.882(1.047 - 0.493)

ΔKE = 0.882 * 0.554

ΔKE = 0.489 J

What is diffraction of light

Answers

Answer:

According to "http://ww2010.atmos.uiuc.edu"  Diffraction is the slight bending of light as it passes around the edge of an object.

Some examples of Light Defraction would be..

-CD reflecting rainbow colours

-Sun appears red during sunset

-From the shadow of an object

What is the acceleration of a 4,000 kg car pushed with a
force of 12,000 N?

Answers

Answer:

3 m/s

Explanation:

A= F/m

12,000/ 4000 = 3

Answer:

3 m/s^2

Explanation:

The equation you have to use is F=ma because the problem is a Newton's 2nd law problem.

Our known values are:

F ( Force ) = 12,000 N

m ( mass ) = 4,000 kg

a ( acceleration ) = ?

Now we plug in the known values into the equation and solve

F=ma

12,000=4,000a

We have to divide 4,000 by both sides to isolate the a value

12,000/4,000=4,000/4,000a

The 4,000s on the right of the equation cancel.

And 12,000 divided by 4,000 equals 3

The acceleration (a) is 3 meters per second squared (m/s^2)

Next, check to make sure 3 does work by plugging it back into the equation.

12,000=4,000*3

12,000=12,000 ✔

As you can see, the acceleration will be 3 m/s^2

What type of weather would a continental Polar air mass bring

Answers

Answer:

Continental polar ( cp):

Explanation:

Cold and dry, originating from high latitudes, typically as air flowing out of the polar highs. This air mass often brings the rattleing cold, dry and clear weather on a perfect winter day and also dry and warm weather on a pleasant day in summer.

A large box slides across a frictionless surface with a velocity of 12 m/s and a mass of 4
kg, collides with a smaller box with a mass of 2 kg that is stationary. The boxes stick
together. What is the velocity of the two combined masses after collision?
8 m/s
O m/s
12 m/s
4 m/s
us 12:18

Answers

Answer= 8m/s

Because total Momentum before= total momentum after

Momentum before (p=mu)
p=(4)(12)= 48
p=2(0)=0
So total momentum before=48

Momentum after (p=mu)
Masses combined —2+4=6kg
p=6u


Mb=Ma
48=6u
u=8m/s

The speed limmit on an interstate highway is posted at 75mi/h. What is the speed in kilometers per hour? In feet per second?

Answers

I uploaded the answer to a file hosting. Here's link:

tinyurl.com/wpazsebu

An object is accelerated by a net force in which direction?
A. at an angle to the force
B. in the direction of the force
C. in the direction opposite to the force
D. Any of these is possible.

Answers

Answer:

B. in the direction of the force

Explanation:

Sana nakatulong

Two 10-cm-diameter charged rings face each other, 21.0 cm apart. Both rings are charged to +40.0 nC. What is the electric field strength ?

Answers

Complete question:

Two 10-cm-diameter charged rings face each other, 21.0 cm apart. Both rings are charged to +40.0 nC. What is the electric field strength  at the midpoint between the two rings ?

Answer:

The electric field strength at the mid-point between the two rings is zero.

Explanation:

Given;

diameter of each ring, d = 10 cm = 0.1 m

distance between the rings, r = 21.0 cm = 0.21 m

charge of each ring, q = 40 nC = 40 x 10⁻⁹ C

let the midpoint between the two rings = x

The electric field strength  at the midpoint between the two rings is given as;

[tex]E_{mid} = E_{right} +E_{left}\\\\E_{right} = \frac{KQ}{(x^2 + r^2)^\frac{2}{3} } \\\\E_{leftt} = -\ \frac{KQ}{(x^2 + r^2)^\frac{2}{3} }\\\\E_{mid} = \frac{KQ}{(x^2 + r^2)^\frac{2}{3} } - \frac{KQ}{(x^2 + r^2)^\frac{2}{3} } = 0[/tex]

Therefore, the electric field strength at the mid-point between the two rings is zero.

The optics of your visual system have a total refractive power of about +60 D—about +20 D from the lens in your eye and +40 D from the curved shape of your cornea. Surgical procedures to correct vision generally do not work on the lens; they work to reshape the cornea. In the most common procedure, a laser is used to remove tissue from the center of the cornea, reducing its curvature. This change in shape can correct certain kinds of vision problems.
The length of your eye decreases slightly as you age, making the lens a bit closer to the retina. Suppose a man had his vision surgically corrected at age 30. At age 70, once his eyes had decreased slightly in length, he would be:________.
A. Nearsighted.
B. Farsighted.
C. Neither nearsighted nor farsighted.

Answers

Answer:

Farsighted

Explanation:

Farsightedness also known as hypermetropia is caused by the eye being too short(the eye shortens with advancing age) or the crystalline lines not being sufficiently convergent.

A farsighted person can see far objects but can not see nearby objects. His near point is now farther than the 25 cm near point of a normal eye. Images are formed some distance behind the retina.

This eye defect is corrected by the use of a converging lens to reduce the divergence of the rays entering the eye from an object.

What would happen if the molecules in a sample moving entirely ?

Answers

Answer:

Molecular scale. The story begins a long time ago  

when the idea that molecules are in constant motion  

was first discovered. Part of the evidence that you can  

see in everyday life was discovered by Robert Brown  

about 150 years ago when he used a microscope to  

watch how tiny dust particles move.

So how fast do molecules move? It all depends upon  

the molecule and its state: molecules in a solid state  

move slower than in a liquid state, and much slower  

than gas molecules. One estimate puts gas molecules  

in the range of 1,100 mph at room temperature. Cool  

them down to almost absolute zero and they slow  

down to less than 0.1 mph (slower than the average  

couch potato). The fact that they are always moving  

makes it a challenge to see molecules and make stuff  

out of them, but it’s a challenge that scientists  

work hard to figure out.

Explanation:

A force of 12 N changes the momentum of a toy car from 3kgm/s t0 10kgm/s. Calculate the time the force took to produce this change in momentum.

Answers

Answer:

Time = 0.58 seconds

Explanation:

Given the following data;

Initial momentum = 3 kgm/s

Final momentum = 10 kgm/s

Force = 12 N

To find the time required for the change in momentum;

First of all, we would determine the change in momentum.

[tex] Change \; in \; momentum = final \; momentum - initial \; momentum [/tex]

[tex] Change \; in \; momentum = 10 - 3 [/tex]

Change in momentum = 7 kgm/s

Now, we can find the time required;

Note: the impulse of an object is equal to the change in momentum experienced by the object.

Mathematically, impulse (change in momentum) is given by the formula;

[tex] Impulse = force * time [/tex]

Making "time" the subject of formula, we have;

[tex] Time = \frac {impulse}{force} [/tex]

Substituting into the formula, we have;

[tex] Time = \frac {7}{12} [/tex]

Time = 0.58 seconds

Calculate the first and second order angles for light of wavelength 400. nm and 700. nm of the grating contains 1.00 x 104 lines/cm.

Answers

Answer:

[tex]23.58^{\circ}[/tex] and [tex]53.13^{\circ}[/tex]

[tex]44.43^{\circ}[/tex], second order does not exist

Explanation:

n = Number of lines grating = [tex]1\times10^4\ \text{Lines/cm}[/tex]

[tex]\lambda[/tex] = Wavelength

m = Order

Distance between slits is given by

[tex]d=\dfrac{1}{n}\\\Rightarrow d=\dfrac{1}{1\times 10^4}\\\Rightarrow d=10^{-6}\ \text{m}[/tex]

[tex]\lambda=400\ \text{nm}[/tex]

m = 1

We have the relation

[tex]d\sin\theta=m\lambda\\\Rightarrow \theta=\sin^{-1}\dfrac{m\lambda}{d}\\\Rightarrow \theta=\sin^{-1}\dfrac{1\times 400\times 10^{-9}}{10^{-6}}\\\Rightarrow \theta=23.58^{\circ}[/tex]

m = 2

[tex]\theta=\sin^{-1}\dfrac{2\times 400\times 10^{-9}}{10^{-6}}\\\Rightarrow \theta=53.13^{\circ}[/tex]

The first and second order angles for light of wavelength 400 nm are [tex]23.58^{\circ}[/tex] and [tex]53.13^{\circ}[/tex].

[tex]\lambda=700\ \text{nm}[/tex]

m = 1

[tex]\theta=\sin^{-1}\dfrac{1\times 700\times 10^{-9}}{10^{-6}}\\\Rightarrow \theta=44.43^{\circ}[/tex]

m = 2

[tex]\theta=\sin^{-1}\dfrac{2\times 700\times 10^{-9}}{10^{-6}}[/tex]

Here [tex]\dfrac{2\times 700\times 10^{-9}}{10^{-6}}=1.4>1[/tex] so there is no second order angle for this case.

The first order angle for light of wavelength 700 nm are [tex]44.43^{\circ}[/tex].

Second order angle does not exist.

If matter cannot be created or destroyed, then how do you end up with
rust? Below is the equation for rust.
4Fe + 302 → 2Fe203
oxygen from the air
water in the atmosphere
oxygen from in the metal
there shouldn't be any oxygen

Answers

Your question is a "non sequitur", which means "it doesn't follow".

Your "then" doesn't contradict your "If", so no mystery is implied.

Maybe you're trying to say that matter is somehow not conserved in the equation . . . 4Fe + 302 → 2Fe203 . But it is.  There are 4 Irons and 6 Oxygens on each side, so conservation is not violated here.

I looked up "rust" on Floogle, and got slapped with pages and pages of chemistry that I don't completely understand.  But what it's saying is that rusting is a very complex chemical process, AND it doesn't happen unless there's some water involved.

So the bottom line is that there's a lot more going on than simply

4Fe + 302 → 2Fe203 ,

there's water going in and out of the process at every stage, and when it's all over, you have rusty iron, and mass has been conserved.

Two resistors have resistances R1 and R2. When the resistors are connected in series to a 12.6-V battery, the current from the battery is 2.07 A. When the resistors are connected in parallel to the battery, the total current from the battery is 8.98 A. Determine R1 and R2. (Enter your answers from smallest to largest.)

Answers

Answer:

When R1 = 2.193, R2 = 3.894

When R1 = 3.894, R2 = 2.193

Explanation:

We are told that when R1 and R2 are connected in series, the voltage is 12.6 V and the current is 2.07 A.

Formula for resistance is;

R = V/I

R = 12.6/2.07

R = 6.087 ohms

Since R1 and R2 are connected in series.

Thus; R1 + R2 = 6.087 ohms

R1 = 6.087 - R2

We are also told that when they are connected in parallel, the current is 8.98 A.

Thus, R = 12/8.98

R = 1.403 ohms

Thus;

(1/R1) + (1/R2) = 1/1.403

Let's put 6.087 - R2 for R1;

(1/(6.087 - R2)) + (1/R2) = 1/1.403

Multiply through by 1.403R2(6.087 - R2) to get;

1.403R2 + 1.403(6.087 - R2) = R2(6.087 - R2)

Expanding gives;

1.403R2 + 8.54 - 1.403R2 = 6.087R2 - (R2)²

(R2)² - 6.087R2 + 8.54 = 0

Using quadratic formula, we have;

R2 = 2.193 ohms or 3.894 ohms

Thus,

R1 = 6.087 - 2.193 or R1 = 6.087 - 3.894

R1 = 3.894 or 2.193

When R1 = 2.193, R2 = 3.894

When R1 = 3.894, R2 = 2.193

Other Questions
I REALLY NEED HELP!!! PLS ITS NOT HARD!!!What does an introduction do in a march?1.Show the dynamics of the piece2. Demonstrate the articulations of the piece3.Model the melody of the piece4.Set the tempo of the piece A map titled Early Muslim Expansion showing Europe, Asia, Persia, the Arabian Peninsula, and Africa. Territory in 632 C E includes the western half and eastern coast of the Arabian Peninsula. Territory in 661 C E includes the rest of the Arabian Peninsula, most of Persia, and a small portion of the northern coast of Africa. Territory in 750 C E includes more of the northern coast of Africa, most of Spain, and extends from Persia in to Asia.Study the map, then use the drop-down menus to complete the sentences.Lands conquered by 632 CE was under the leadership of .Islam first spread across the Arabian Peninsula under .The Islamic caliphate reached its largest size in 750 CE, during the leadership of . When creating a histogram, the first recorded scale is 1 to 15. What should the second scale indicate? A. 15-30 B. 16-30 C. 16-29 D. 16-31 pls help with math thats attached 7.It's either letter A or letter CDuring which stage of the listening process do you pay close attention to verbal and nonverbal signals?A. evaluationB. preparationC. active involvement Need help fast please The table shows the results of an experiment in which Max drew tiles from a bag. If Max conducts this experiment again and performs 200 trials, which is the best prediction of how many times he will draw a blue tile?FrequencyRed 9Blue 46Green 25TOTAL TRIALS 80 Which provisions were included in the Treaty of Versailles? Select three options.1. the formation of the League of Nations2. the return of disputed territory to Germany3. limitations on the size of Germanys military4 the requirement that Germany pay reparations5. the end of secret negotiations between countries I have finished my homework change to present perfect continuous can someone help????? Whats the slope m and y-intercept b of both these images? Rosario wants to explore a city without a subway. She does not like to drive and prefers not to walk today. What can she do? Rosario puede ________. rentar un auto rentar un mototaxi tomar el metro tomar un avin Perform the operation.(x^2 + 8x + 8) + (-10x2 + 5x) PLEASE I NEED HELP CLICK ON THIS IMAGE how are three of the properties Using cell references enter a formula in B6 to calculate monthly payments for the loan described in this worksheet Omit the optional arguement use a negative value for pv Engineers are digging a 3200-foot-long tunnel at a constant rate. After 5 months, the engineers still need to dig 1700 feet to finish the project. How much time does it take to complete the tunnel from start to finish? Will the engineers have enough time if the project was started in December 2020 and the deadline to finish the project was in August 2021? Please explain your answer for yes or no.Hint:y=mx+b (slope-intercept form)x=timey=distanceb=3200Start & Finish: ??Total length=3200ftLeft over=1700ft after 5 months of digginghelp/ 3. Who is the large man with the mighty mustache in the cartoon?A. William 1B. William 11C. Otto von BismarckD. Napoleon III Is this correct and if not what am I missing? Which letter identifies Asia Minor?ABCD