Answer:
coupling is in tension
Force = -244.81 N
Explanation:
Diameter of Hose ( D1 ) = 35 mm
Diameter of nozzle ( D2 ) = 25 mm
water gage pressure in hose = 510 kPa
stream leaving the nozzle is uniform
exit speed and pressure = 32 m/s and atmospheric
Determine the force transmitted by the coupling between the nozzle and hose
attached below is the remaining part of the detailed solution
Inlet velocity ( V1 ) = V2 ( D2/D1 )^2
= 32 ( 25 / 35 )^2
= 16.33 m/s
Combinations of velocity and acceleration
Answer:
acceleration=change in velocity/ time
Explanation:
The velocity of an object is its speed in a particular direction. Velocity is a vector quantity because it has both a magnitude and an associated direction. To calculate velocity, displacement is used in calculations, rather than distance.
Fig_Q5
6. A steel rod is stressed by a tension force of 250 N. It is found that the rod has length of 45
m and diameter of 1.5 mm. If the modulus of elasticity of the steel rod is assumed as 2 x 105
MPa, determine the strain of the steel rod due to the applied force.
Answer:
The strain of the steel rod due to the applied force is 41.93
Explanation:
Modulus of elasticity is equal to stress divided by strain.
And stress is equal to force divided by area
Surface area of cylindrical rod
[tex]2\pi r (r+h)[/tex]
Substituting the given values we get -
[tex]2 *3.14 * \frac{1.5}{1000} * 45 (45 + \frac{1.5}{1000}) = 19.07[/tex]
[tex]2 * 10 ^5 = \frac{250}{19.07 * S=(\frac{\Delta L}{L} )}[/tex]
Hence, strain is equal to
Strain = 41.93